NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Agenda

1. Background knowledge

Compiler, linker, loader

x86 and x86-64 architectures and ISA
ARM ISA

Linux fundamentals

d.

b.
C.
d.

.

ii.
iii.
iv.
V.
Vi.
Vii.
Viii.

Linux file permissions

Set-UID programs

Memory map of a Linux process
System calls

Piping

Environment and Shell variables
ELF files

Reverse engineering tools

Background Knowledge:
Compiler, linker, and loader

From a C program to a process

Library files

Symbol tables (.symtab) K

} Reloc entries (.rel.data/t)

Other obj files/modules

transform code and optimize symbol resofytjgh and relocation

Pre-processing Compilation Assembly Linki Loading

ccp ~ccl as Id loader
prog.c =™ prog.1 =™ prog.s —> prog.0 —> prog —> ./prog

C rog.c prog.lt gcc —S [-m32] prog.c gcc—¢ prog.c JCC —0 prog prog.c
?pppspoi, |]per prog.c g pgpeé A
| | | | | !
1 I I
source code source code assem code relocatable obj executable obj process
(text) (text) (text) (binary) (binary)

expand all defs and includes translate assem into reloc obj files

A Shell in a Nutshell

int pid = fork();

if (pid == 0) {
// T am the child process

exec("Is"); }
else if (pid == -1)
{
// fork failed
}
else {
// T am the parent; continue my business being a cool program
// T could wait for the child to finish if I want

}
https://github.com/kamalmarhubi/shell-workshop

Loading and Executing a Binary Program on Linux

Validation (permissions, memory requirements etc.)

Operating system starts by setting up a new process for the program
to run in, including a virtual address space.

The operating system maps an interpreter into the process’s virtual
memory.

Interpreter, e.g., /lib/ld-linux.so in Linux

The interpreter loads the binary into its virtual address space (the same
space in which the interpreter is loaded).

It then parses the binary to find out (among other things) which dynamic
libraries the binary uses.

The interpreter maps these into the virtual address space (using mmap or an
equivalent function) and then performs any necessary last-minute
relocations in the binary’s code sections to fill in the correct addresses for
references to the dynamic libraries.

1. Copying the command-line arguments on the stack
2. Initializing registers (e.g., the stack pointer)
3. Jumping to the program entry point (_start)

Compiling a C program behind the scene (add_32 add_64)

add.c

add.h

main.c

#include "add.h"
#define BASE 50
int add(int a, int b)

{returna+b +
BASE;}

#ifndef ADD_H
#define ADD_H

int add(int, int);

#endif

/* This program has an integer overflow vulnerability. */
#include "add.h"

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define USAGE "Add two integers with 50. Usage: add a b\n"

int main(int argc, char *argv[])
{

inta=0;

intb=0;

if (argc 1= 3)
{
printf(USAGE);
return 0;}

a = atoi(argv[1]);

b = atoi(argv[2]);

printf("%d + %d + 50 = %d\n", a, b, add(a, b));
}

Background Knowledge:
x86 architecture

Data Types

There are 5 integer data types:

Byte - 8 bits.

Word - 16 bits.

Dword, Doubleword - 32 bits.
Quadword - 64 bits.

Double quadword - 128 bits.

Endianness

e Little Endian (Intel, ARM)
Least significant byte has lowest address

Dword address: 0x0
Value: 0x78563412

e Big Endian

Least significant byte has highest address
Dword address: 0x0
Value: 0x12345678

Address 0

Address 1

Address 2

Address 3

0x12

0x34

0x56

0x78

Base Registers

There are
e Eight 32-bit “general-purpose” registers,
e One 32-bit EFLAGS register,
e One 32-bitinstruction pointer register (eip), and
e Other special-purpose registers.

The General-Purpose Registers

16 bits

8 bits 8 bits
EAX AX AL e 38 general-purpose
2 | Eex Bx| BH BL registers
¢ e x| o aL e esp is the stack pointer
S | eox - - e ebpis the base pointer
. e esiand ediare source and
” destination index registers

EDI

o for array and string
(stack pointer) (0] pe I’atl ons

EBP
(base pointer)

32 bits

EAX

EBX

ECX

EDX

ESI

General-purpose Registers

EDI

ESP
(stack pointer)

EBP
(base pointer)

The General-Purpose Registers

8 bits

16 bits

8 bits

AH

AL

BX

BH

BL

CX

CH

CIE

DX

DH

DL

32 bits

The registers eax, ebx, ecx,
and edx may be accessed as
32-bit, 16-bit, or 8-bit
registers.

The other four registers can
be accessed as 32-bit or
16-bit.

EFLAGS Register

The various bits of the 32-bit EFLAGS register are set (1) or reset/clear (0)
according to the results of certain operations.

We will be interested in, at most, the bits

CF - carry flag
PF - parity flag
ZF - zero flag
SF - sign flag

Instruction Pointer (EIP)

Finally, there is the EIP register, which is the instruction pointer (program
counter). Register EIP holds the address of the next instruction to be
executed.

Registers on x86 and amd64

(zMMo [YMMO_[xMMo J[zMM1 [YMML_[Xxmm1]| [sT(0)[MMO ||| ST(1)[MM1 || [EIsAXeAx|RAX|[ELuev] o] Re|[Fhuzv]roR12] [MswcRO| CR4 |
(zMM2 [YMM2_[xMM2][zMM3 [YMM3_[xmm3] [sT(2)[MM2 ||| sT(3)[MM3 || [ebiexEx|RBX|[Emv] weo] Ro|[Efivfreojr1s] [CR1 | CR5 |

| Es | Fs | es || TR | LDTR || DR1 | DR7 |

ol RFLAGS] | DR2 || DR8 |

| DR4 | DR10 | DR12 | DR14 |
| DR5 | DR11 | DR13 | DR15 |

(zMM4 [YMM4 [xMMa][zMM5 [YMM5_[xmm5]| [sT(4)[MM4 ||| sT(5)[MM5 || [EIicxEcx]RCX][Efiaov]menr 10][Efumfraclr14] [cR2 || CR6 |
(zMM6 [YMM6_[xMM6][zMM7 [YMM7_[xmm7]| [ST(6)[MM6 ||| ST(7)[MM7 || [EEDXEoXRDX|[Efu]rcR11][FfusvfrsoR15] [CR3 | CR7 |
(zMM8 [YMM8_[xMMs][ZMM9 [YMM9_[xmmo]| [=ePEBPRBP| [DIeDiRDI| [_P[EIP|RIP| [MXCSR][CR8 |
(zMM10 [YMM10 [xMM1o][zMM11 [yMM11[xmmiy| [cw |[FP_IP|Fp_DP|FP_cs| [EdSIEs] RsI| [EIsPESPRSP)
(ZMM12 [YMM12 xMM12][ZMM13 [YMM13 [XMM13]| | Sw |
zMM14 [YMM14 [xmMig][zMM15 [yMMispvmis] [Tw | M ‘;}b:.tregi-ﬁtir 2 ZEE'E regfster = ‘:;’:::egis_t‘zr g iig‘;': 'egfster
Znre] 2] zvse] zurs]| g zwzi]| v ws] [pps| I ceter W evoitreaister [126 it register J S12-bitregiter
IZMM24|| ZMMZSH ZMM26|| ZMM27” ZMM28” ZMM29H ZMM30|| ZMM31‘ ’FP_OPCHFP_DPHFP_IP‘ | CS H SS H DS | ’ GDTR H IDTR ‘ ’ DRO H DR6 ‘ ‘CR13‘

| CR14 |

| CR15 |

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

Instructions

Each instruction is of the form

label: mnemonic operand1, operand2, operand3
The label is optional.

The number of operands is 0, 1, 2, or 3, depending on the mnemonic .

Each operand is either
e Animmediate value,
e Avregister, or
e A memory address.

Source and Destination Operands

Each operand is either a source operand or a destination operand.

A source operand, in general, may be
e Animmediate value,
e Avregister, or
e A memory address.
A destination operand, in general, may be
e Avregister, or
e A memory address.

Instructions

hlt - 0 operands

halts the central processing unit (CPU) until the next external interrupt is
fired

inc - 1 operand; inc <reg>, inc <mem>

add - 2 operands; add <reg>,<reg>

imul - 1, 2, or 3 operands; imul <reg32>,<reg32>,<con>

In Intel syntax the first operand is the destination

Intel Syntax Assembly and Disassembly

Machine instructions generally fall into three categories: data movement,
arithmetic/logic, and control-flow.

<reg32> Any 32-bit register (eax, ebx, ecx, edx, esi, edi, esp, or ebp)
<reg16> Any 16-bit register (ax, bx, cx, or dx)

<reg8> Any 8-bit register (ah, bh, ch, dh, al, bl, cl, or dl)

<reg> Any register

<mem> A memory address (e.g., [eax] or [eax + ebx*4]); [] square brackets
<con32> Any 32-bit immediate

<con16> Any 16-bit immediate

<con8> Any 8-bit immediate

<con> Any 8-, 16-, or 32-bit immediate

Addressing Memory

Move from source (operand 2) to destination (operand 1)
Square bracket [] represents memory location.

mov [eax], ebx Copy 4 bytes from register EBX into memory address specified
in EAX.

mov eax, [esi - 4] Move 4 bytes at memory address ESI - 4 into EAX.

mov [esi + eax * 1], cl Move the contents of CL into the byte at address
ESI+EAX*1.

mov edx, [esi + ebx*4] Move the 4 bytes of data at address ESI+4*EBX into
EDX.

Addressing Memory

The size directives BYTE PTR, WORD PTR, and DWORD PTR serve this purpose,
indicating sizes of 1, 2, and 4 bytes respectively.

mov [ebx], 2isn’t this ambiguous? We can have a default.

mov BYTE PTR [ebX], 2 Move 2 into the single byte at the address stored
in EBX.

mov WORD PTR [ebx], 2 Move the 16-bit integer representation of 2 into the 2
bytes starting at the address in EBX.

mov DWORD PTR [ebx], 2 Move the 32-bit integer representation of 2 into the 4
bytes starting at the address in EBX.

Data Movement Instructions

mov — Move

Syntax

mov <reg>, <reg>
mov <reg>, <mem>
mov <mem>, <reg>
mov <reg>, <con>
mov <mem>, <con>

Examples
mov eax, ebx — copy the value in EBX into EAX
mov byte ptr [var], 5 — store the value 5 into the byte at location var

Data Movement Instructions

push — Push on stack; decrements ESP by 4, then places the operand at the
location ESP points to.

Syntax

push <reg32>
push <mem>
push <con32>

Examples
push eax — push eax on the stack
push [var] — push the 4 bytes at address var onto the stack

Data Movement Instructions

pop — Pop from stack

Syntax
pop <reg32>
pop <mem>

Examples

pop edi — pop the top element of the stack into EDI.

pop [ebx] — pop the top element of the stack into memory at the four bytes
starting at location EBX.

LEA Instructions

lea — Load effective address; used for quick calculation

Syntax
lea <reg32>, <mem>

Examples
Lea edi, [ebx+4*esi] — the quantity EBX+4*ESI is placed in EDI.

Arithmetic and Logic Instructions

add eax, 10 — EAX is set to EAX+ 10

addb byte ptr [eax], 10 — add 10 to the single byte stored at memory address
stored in EAX

sub al, ah — AL is set to AL - AH
sub eax, 216 — subtract 216 from the value stored in EAX

dec eax — subtract one from the contents of EAX

imul eax, [ebx] — multiply the contents of EAX by the 32-bit contents of the
memory at location EBX. Store the result in EAX.

shr ebx, c| — Store in EBX the floor of result of dividing the value of EBX by 2n
where n is the value in CL.

Control Flow Instructions

jmp — Jump

Transfers program control flow to the instruction at the memory location
indicated by the operand.

Syntax
jmp <label> # direct jump
jmp <reg32> # indirect jump

Example
jmp begin — Jump to the instruction labeled begin.

Control Flow Instructions

jeondition — Conditional jump

Syntax

je <label> (jump when equal)

jne <label> (jump when not equal)

jz <label> (jump when last result was zero)

jg <label> (jump when greater than)

jge <label> (jump when greater than or equal to)
jl <label> (jump when less than)

jle <label> (jump when less than or equal to)

Example

cmp ebx, eax
jle done

Control Flow Instructions

cmp — Compare

Syntax

cmp <reg>, <reg>
cmp <mem>, <reg>
cmp <reg>, <mem>
cmp <con>, <reg>

Example
cmp byte ptr [ebx], 10

jeq loop

If the byte stored at the memory location in EBX is equal to the integer constant 10,
jump to the location labeled loop.

Control Flow Instructions

call — Subroutine call

The call instruction first pushes the current code location onto the
hardware supported stack in memory, and then performs an
unconditional jump to the code location indicated by the label
operand. Unlike the simple jump instructions, the call instruction saves
the location to return to when the subroutine completes.

Syntax

call <label>
call <reg32>
Call <mem>

Control Flow Instructions

ret — Subroutine return

The ret instruction implements a subroutine return mechanism. This
instruction pops a code location off the hardware supported in-memory
stack to the program counter.

Syntax
ret

The Run-time Stack

The run-time stack supports procedure calls and the passing of
parameters between procedures.

The stack is located in memory.
The stack grows towards low memory.
When we push a value, esp is decremented.

When we pop a value, esp is incremented.

Stack Instructions

enter — Create a function frame
Equivalent to:
push ebp

mov ebp, esp
sub esp, Imm

Stack Instructions

leave — Releases the function frame set up by an earlier ENTER instruction.
Equivalent to:

mov esp, ebp
pop ebp

Background Knowledge:
x86-64/amd64 architecture

Registers on x86 and x86-64

(zMMo [YMMO_[xMMo J[zMM1 [YMML_[Xxmm1]| [sT(0)[MMO ||| ST(1)[MM1 || [EIsAXeAx|RAX|[ELuev] o] Re|[Fhuzv]roR12] [MswcRO| CR4 |
(zMM2 [YMM2_[xMM2][zMM3 [YMM3_[xmm3] [sT(2)[MM2 ||| sT(3)[MM3 || [ebiexEx|RBX|[Emv] weo] Ro|[Efivfreojr1s] [CR1 | CR5 |

| Es | Fs | es || TR | LDTR || DR1 | DR7 |

ol RFLAGS] | DR2 || DR8 |

| DR4 | DR10 | DR12 | DR14 |
| DR5 | DR11 | DR13 | DR15 |

(zMM4 [YMM4 [xMMa][zMM5 [YMM5_[xmm5]| [sT(4)[MM4 ||| sT(5)[MM5 || [EIicxEcx]RCX][Efiaov]menr 10][Efumfraclr14] [cR2 || CR6 |
(zMM6 [YMM6_[xMM6][zMM7 [YMM7_[xmm7]| [ST(6)[MM6 ||| ST(7)[MM7 || [EEDXEoXRDX|[Efu]rcR11][FfusvfrsoR15] [CR3 | CR7 |
(zMM8 [YMM8_[xMMs][ZMM9 [YMM9_[xmmo]| [=ePEBPRBP| [DIeDiRDI| [_P[EIP|RIP| [MXCSR][CR8 |
(zMM10 [YMM10 [xMM1o][zMM11 [yMM11[xmmiy| [cw |[FP_IP|Fp_DP|FP_cs| [EdSIEs] RsI| [EIsPESPRSP)
(ZMM12 [YMM12 xMM12][ZMM13 [YMM13 [XMM13]| | Sw |
ZMM14 [YMM14 [xMM14][ZMM15 [YMM15 [xvmis]| | Tw | =ib:itr‘2i‘°‘,tir = ZEEI: regfster Cl f;b:.tregis.tir =§i§2': registe:
[2ne]] zmma || zmvaae] zvmas]| zwmz]| zmza][zumzz] zwmz3| [FP_Ds| itrearter W eapitreaster W 2o vt register Ml S1zbiteaite
IZMM24|| ZMMZSH ZMM26|| ZMM27” ZMM28” ZMM29H ZMM30|| ZMM31‘ ’FP_OPCHFP_DPHFP_IP‘ | CS H SS H DS | ’ GDTR H IDTR ‘ ’ DRO H DR6 ‘ ‘CR13‘

|CR14|

| CR15 |

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

x86 vs. x86-64 (code/ladd)

main.c

/-k
This program has an integer overflow vulnerability.
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

long long ladd(long long *xp, long long y)
{

long long t="*xp +vy;

return t;

int main(int argc, char *argv[])

{
long long a = 0;
long long b = 0;

if (argc 1= 3)
{
printf("Usage: ladd a b\n");
return 0;

}
printf("The sizeof(long long) is %d\n", sizeof(long long));

a = atoll(argv[1]);
b = atoll(argv[2]);

printf("%lld + %lld = %lld\n", a, b, ladd(&a, b));

x86 vs. x86-64 (code/ladd)

x86
000012c0 <ladd>:
12c0: f30f1efb endbr32
12c4. 8b 44 24 04 mov eax,DWORD PTR [esp+0x4]
12c8: 8b 50 04 mov edx,DWORD PTR [eax+0x4]
12cb: 8b 00 mov eaXx,DWORD PTR [eax]
12cd: 03442408 add eax,DWORD PTR [esp+0x8]
12d1: 1354 24 Oc adc edx,DWORD PTR [esp+0x(]
12d5: c3 ret
x86-64
0000000000001220 <ladd>:
1220: f30f1efa endbr64
1224. 48 8b 07 mov rax,QWORD PTR [rdi]
1227: 48 01 f0 add rax,rsi
122a: c3 ret

odeump -M intel -d ladd_32
: objdump -M intel -d ladd_64

Background Knowledge:
ARM Cortex-A/M Architecture

Frame pointer
Procedure link register

X0/WO0

X1/W1l

X2/W2

X3/W3

X4/W4

X5/W5

X6/W6

X7 /W7

X8/W8

X9/W9

X10/W10

X11/wW1ll

X12/W12

X13/W13

X14/W14

X15/wW15

X16/W16

X17 /W17

X18/wW18

X19/W19

X20/W20

X21/wW21

X22/W22

X23/W23

X24/W24

X25/W25

X26/W26

X27 /W27

X28/wW28

X29/W29

X30/W30

ELO, EL1,

EL2, EL3

Special
registers

Cortex-A 64 bit

Zero register XZR/WZR
Program counter PC
Stack pointer| SP_ELO || SP_EL1 SP_EL2 SP_EL3
Program Status Register SPSR_EL1 | | SPSR_EL2 | | SPSR_EL3
Exception Link Register ELR_EL1 ELR_EL2 ELR_EL3
N ELO EL1 EL2 EL3

low registers <

high registers <

Program Status Register

Cortex-M 32 bhit

r0

r1

r2

r3

r4

rs5

ré

r7

r8

r9

r10

r11

r12

r13 (SP)

SP_process

SP_main

14 (LR)

r15 (PC)

xPSR

Background Knowledge:
Linux File Permissions

Permission Groups

Each file and directory has three user-based permission groups:

Owner - A user is the owner of the file. By default, the person who created a file
becomes its owner. The Owner permissions apply only the owner of the file or
directory

Group - A group can contain multiple users. All users belonging to a group will
have the same access permissions to the file. The Group permissions apply only
to the group that has been assigned to the file or directory

Others - The others permissions apply to all other users on the system.

Permission Types

Each file or directory has three basic permission types defined for all the 3 user
types:

Read - The Read permission refers to a user’s capability to read the contents of
the file.

Write - The Write permissions refer to a user’s capability to write or modify a file
or directory.

Execute - The Execute permission affects a user’s capability to execute a file or
view the contents of a directory.

File type: First field in the output is file type. If the there is a - it means it
is a plain file. If there is d it means it is a directory, c represents a
character device, b represents a block device.

ziming@ziming-ThinkPad:~$ 1ls -1
total 530336
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-r----
-TW-r--r--
drwxr-xr-x
d rwxrwxr-x
-TW-F--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

ziming ziming 742772 14-P2P.pdf

ziming ziming 32956 : 19273679_G.webp
ziming ziming 94868 : 200320_brigham. jpg
ziming ziming 700 2.Ext

ziming ziming 145408 acpi_override
ziming ziming 4096 : App

ziming ziming 4096 Arduino

ziming ziming 163225 autoproxy.pac
ziming ziming 4096 - Desktop

ziming ziming 4096 devel

ziming ziming 4096 develgemu

ziming ziming 4096 : Documents

ziming ziming 69632 - Downloads

ziming ziming 4096 : Dropbox

ziming ziming 144272 dsdt.aml

ziming ziming 1075439 dsdt.dsl

ziming ziming 1075439 dsdt.dsl.ziming.manual
ziming ziming 1352883 dsdt.hex

ziming ziming 0 enclave token
ziming ziming 57747 - TjOLBjXkAMXVIs-630x390. j
ziming ziming 8980 examples desktop

-rW-r--r--
-TW-r--r--
-rW-r--r--
-rW-r--r--
-rW-r--r--
-TW-TW-T--
-rW-r--r--

PR b e b b 00D DWW W DD e

Permissions for owner, group, and others

ziming@ziming-ThinkPad:~$ 1ls -1
total 530336
-TW-TW-I--
-TW-TW-I--
-TW-TW-T--
-TW-F--r--
-TW-F--r--
drwxr-xr-x
drwxrwxr-x
-TW-F--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

ziming ziming 742772
ziming ziming 32956
ziming ziming 94868
ziming ziming 700
ziming ziming 145408
ziming ziming 4096
ziming ziming 4096
ziming ziming 163225
ziming ziming 4096
ziming ziming 4096
ziming ziming 4096
ziming ziming 4096
ziming ziming 69632
ziming ziming 4096
ziming ziming 144272
ziming ziming 1075439
ziming ziming 1075439
ziming ziming 1352883
ziming ziming 0
ziming ziming 57747
ziming ziming 8980

-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-TW-T--
-TW-r--r--

PR b e b b 00D DWW W DD e

14-P2P.pdf
19273679 _G.web

brigham. jpg

2.txt
acpi_override
App

Arduino
autoproxy.pac
Desktop

devel
develgemu
Documents
Downloads
Dropbox
dsdt.aml
dsdt.dsl
dsdt.dsl.ziming.manual
dsdt.hex
enclave. token

ETJOLBIXKAMXVIs-630x390

exémplés.desktop

Link count

ziming@ziming-ThinkPad:~$ 1ls -1
total 53033¢
-TW-TW-T--
-TW-TW-T--
~-TW-TW-T--
-TW-r--r--
-TW-r--r--
drwxr-xr-x
drwxrwxr-x
-TW-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

ziming ziming 742772 14-P2P.pdf
ziming ziming 32956 19273679 _G.web

ziming ziming 94868 200320_brigham. jpg
ziming ziming 700 2.txt

ziming ziming 145408 acpi_override

ziming ziming 4096 App

ziming ziming 4096 Arduino

ziming ziming 163225 autoproxy.pac

ziming ziming 4096 Desktop

ziming ziming 4096 devel

ziming ziming 4096 develgemu

ziming ziming 4096 Documents

ziming ziming 69632 Downloads

ziming ziming 4096 Dropbox

ziming ziming 144272 dsdt.aml

ziming ziming 1075439 dsdt.dsl

ziming ziming 1075439 dsdt.dsl.ziming.manual
ziming ziming 1352883 dsdt.hex

ziming ziming 0 enclave. token

ziming ziming 57747 ETjJOLBjXkAMXVIs-630x390
ziming ziming 8980 examples.desktop

-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-TW-T--
-TW-r--r--

PR b e b b 00D DWW W DD e

Owner: This field provide info about the creator of the file.

ziming@ziming-ThinkPad:~$ 1ls -1
total 530336
-TW-TW-T--
-TW-TW-T--
~-TW-TW-T--
-TW-r--r--
-TW-r--r--
drwxr-xr-x
drwxrwxr-x
-TW-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

ziming ziming 742772 14-P2P.pdf
ziming ziming 32956 19273679 _G.web

ziming ziming 94868 200320_brigham. jpg
ziming ziming 700 2.txt

ziming ziming 145408 acpi_override

ziming ziming 4096 App

ziming ziming 4096 Arduino

ziming ziming 163225 autoproxy.pac

ziming ziming 4096 Desktop

ziming ziming 4096 devel

ziming ziming 4096 develgemu

ziming ziming 4096 Documents

ziming ziming 69632 Downloads

ziming ziming 4096 Dropbox

ziming ziming 144272 dsdt.aml

ziming ziming 1075439 dsdt.dsl

ziming ziming 1075439 dsdt.dsl.ziming.manual
ziming ziming 1352883 dsdt.hex

ziming ziming 0 enclave. token

ziming ziming 57747 ETjJOLBjXkAMXVIs-630x390
ziming ziming 8980 examples.desktop

-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-TW-T--
-TW-r--r--

PR b e b b 00D DWW W DD e

ziming@ziming-ThinkPad:~$ 1ls -1
total 530336
-TW-TW-T--
-TW-TW-T--
~-TW-TW-T--
-TW-r--r--
-TW-r--r--
drwxr-xr-x
drwxrwxr-x
-TW-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

ziming ziming 742772
ziming ziming 32956
ziming ziming 94868
ziming ziming 700
ziming ziming 145408
ziming ziming 4096
ziming ziming 4096
ziming ziming 163225
ziming ziming 4096
ziming ziming 4096
ziming ziming 4096
ziming ziming 4096
ziming ziming 69632
ziming ziming 4096
ziming ziming 144272
ziming ziming 1075439
ziming ziming 1075439
ziming ziming 1352883
ziming ziming 0
ziming ziming 57747
ziming ziming 8980

-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-TW-T--
-TW-r--r--

PR b e b b 00D DWW W DD e

14-P2P.pdf
19273679 _G.web

brigham. jpg

2.txt
acpi_override
App

Arduino
autoproxy.pac
Desktop

devel
develgemu
Documents
Downloads
Dropbox
dsdt.aml
dsdt.dsl
dsdt.dsl.ziming.manual
dsdt.hex
enclave. token

ETJOLBIXKAMXVIs-630x390

exémplés.desktop

ziming@ziming-

total 530336
~-TW-TW-r--
-TW-TW-I--
~TW-TW-I -~
~-TW-F---~
~-TW-r--~--
drwxr-xr-x
drwxrwxr-x
~-fW-F---~
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
~fW-F--F~-~
~-TW-F---~
~-TW-F--~--
-fW-r--r--
~fW-F~--F~-~
-TW-TW-I--
-TW-r--f~--

PR b e b b 00D DWW W DD e

ThinkPad:~$ 1s -t

ziming ziming 742772
ziming ziming 32956
ziming ziming 94868
ziming ziming 700
ziming ziming 145408
ziming ziming 4096
ziming ziming 4096
ziming ziming 163225
ziming ziming 4096
ziming ziming 4096
ziming ziming 4096
ziming ziming 4096
ziming ziming 69632
ziming ziming 4096
ziming ziming 144272
ziming ziming 1075439
ziming ziming 1075439
ziming ziming 1352883
ziming ziming 0
ziming ziming 57747
ziming ziming 8980

14-P2P.pdf
19273679 _G.web

brigham. jpg

2.txt
acpi_override
App

Arduino
autoproxy.pac
Desktop

devel
develgemu
Documents
Downloads
Dropbox
dsdt.aml
dsdt.dsl
dsdt.dsl.ziming.manual
dsdt.hex
enclave. token

ETJOLBIXKAMXVIs-630x390

exémplés.desktop

Last modify time

ziming@ziming-ThinkPad:~$ 1ls -1
total 530336
-TW-TW-T--
-TW-TW-T--
~-TW-TW-T--
-TW-r--r--
-TW-r--r--
drwxr-xr-x
drwxrwxr-x
-TW-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

ziming ziming 742772 14-P2P.pdf

ziming ziming 32956 19273679 _G.web

ziming ziming 94868 200320_brigham. jpg
ziming ziming 700 2.txt

ziming ziming 145408 acpi_override

ziming ziming 4096 App

ziming ziming 4096 Arduino

ziming ziming 163225 autoproxy.pac

ziming ziming 4096 Desktop

ziming ziming 4096 devel

ziming ziming 4096 develgemu

ziming ziming 4096 Documents

ziming ziming 69632 Downloads

ziming ziming 4096 Dropbox

ziming ziming 144272 dsdt.aml

ziming ziming 1075439 dsdt.dsl

ziming ziming 1075439 dsdt.dsl.ziming.manual
ziming ziming 1352883 dsdt.hex

ziming ziming 0 enclave. token

ziming ziming 57747 ETjOLBjXkAMXVIs-630x390

-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-TW-T--
-TW-r--r--

PR b e b b 00D DWW W DD e

ziming ziming 8980 exémplés.desktop

~-TW-TW-r--
-TW-TW-I--
~TW-TW-I -~
~-TW-F---~
~-TW-r--~--
drwxr-xr-x
drwxrwxr-x
~-fW-F---~
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

-TW-r--r--

-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-TW-T--
-TW-r--r--

PR b e b b 00D DWW W DD e

ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming

ziming@ziming-ThinkPad:~$ 1ls -1
total 530336

ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming
ziming

742772
32956
94868

700
145408
4096
4096
163225
4096
4096
4096
4096
69632
4096
144272
1075439
1075439
1352883
0

57747
8980

Oct
Mar
Mar
Nov
Aug
Mar
Apr
Jul
May
Oct
Oct
May
May
May
Aug
Aug
Aug
Aug
Nov
Mar
Aug

29
21
21
18
20
18
11
14
21
il
26
19
24
24
20
20
20
20

21
16

filename

2019
23:21
23:20

2019

2018
15:48

2019

2019
10:22

PACK S

2018
14:31
10:11
09:51

2018

2018

2018

2018

2019
23:20

2018

14-P2P.pdf
19273679 _G.web
200320 brigham.jpg

.

2.txt

acpi_override

App

Arduino

autoproxy.pac

Desktop

devel

develgemu

Documents

Downloads

Dropbox

dsdt.aml

dsdt.dsl
dsdt.dsl.ziming.manual
dsdt.hex

enclave. token
ETJOLBjXkAMXVIs-630x390. jpg

> I\

exémplés.desktop

Background Knowledge:
Set-UID Programs

From a C program to a process

Symbol tables (.symtab) ’\

} Reloc entries (.rel.data/t)

transform code and optimize symbol reso\\t]
Pre-processing Compilation Assembly Linki

cep ~ccl as 1
prog.c =™ prog.1 =™ prog.s —> prog.0 —

A\CPP prog.c prog.i gcc—S [-m32] prog.c gcc—¢ prog.c gcc —o pr
i A A A
I 1 I |
I 1 I 1
1 I I
source code source code assem code relocatable obj
(text) (text) (text) (binary)

Library files

Other obj files/modules

a2} n(] I‘P]{\{"-]fl'(\ﬂ

Loading

1 loader
—> prog —> ./prog

pg prog£ A
I I
1 I
[I
executable obj process

(binary)

expand all defs and includes translate assem into reloc obj files

Real UID, Effective UID, and Saved UID

Each Linux/Unix process has 3 UIDs associated with it.

Real UID (RUID): This is the UID of the user/process that created THIS
process. It can be changed only if the running process has EUID=0.

Effective UID (EUID): This UID is used to evaluate privileges of the process
to perform a particular action. EUID can be changed either to RUID, or SUID
if EUID!=0. If EUID=0, it can be changed to anything.

Saved UID (SUID): If the binary image file, that was launched has a Set-UID
bit on, SUID will be the UID of the owner of the file. Otherwise, SUID will be
the RUID.

Set-UID Program

The kernel makes the decision whether a process has the privilege by
looking on the EUID of the process.

For non Set-UID programs, the effective uid and the real uid are the
same. For Set-UID programs, the effective uid is the owner of the
program, while the real uid is the user of the program.

What will happen is when a setuid binary executes, the process changes
its Effective User ID (EUID) from the default RUID to the owner of this
special binary executable file which in this case is - root.

ziming@ziming-ThinkPad:~$ 1ls -al /bin/

total 12676
drwxr-xr-x
drwxr-xr-x
-TWXI-Xr-Xx
-TWXI-Xr-X
-TWXI-Xr-Xx
-TWXI-Xr-X
-TWXI-Xr-X
Lrwxrwxrwx
-TWXI-Xr-x
Trwxrwxrwx
-TWXI-Xr-X
Lrwxrwxrwx
-TWXI-Xr-x
-FWXM-Xr-X
-TWXM-Xr-X
Lrwxrwxrwx
-TWXI-Xr-Xx
-FWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-x
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-x
-FWXI-Xr-X
-TWXI-Xr-X
-TWXM-Xr-X
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-Xx

R R R R R R R e S e e e R e R W R e e e W W RO N

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

4096
4096
1113504
748968
34888
2062296
34888
6

2140

6

4877

6

3642
34888
14328
6

1297
35064
14328
63672
59608
67768
10312
141528
157224
121432
100568
76000
84776
133792
72000

May 26
May 18
Jun 6
Aug 29
Jul
Mar
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jan
Apr
Jan
Jan
Jan
Jan
Jan
Nov
Jan
Jan
Jan
Jan
Jan
Mar

[
(oo TR S S S SR ST S S S S S S

bash

britty

bunzip2

busybox

bzcat

bzcmp -> bzdiff

bzdiff

bzegrep -5 ~TWXr-Xr-X

bzexe Lrwxrwxrwx

bzfgrep ->1lrwxrwxrwx

bzgrep - FWXI =X -X

bzip2 - FWXF-XT -X

bzip2recov ryx rwxrwx

bzless ->

beaar s -TWXI-Xr-X

- -TWSI-Xr-X

A -TWXI-Xr-X

chgrp ~FTWXIr-Xr-X

chmod TrwXxrwxrwx

chown -FWXF-Xr-X

chvt - FWXF-XI-X

An -FTWXF-Xr-X

chLO - FWXT - XTI -X

dash

P -TWXI-Xr-X

dd -FWXr-Xr-X

df STWXI-Xr-x

dir -TWXI-Xr-X

dmesg -TWXI-Xr-x
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-X
-TWXI-Xr-X
-TWSI-Xr-X
-TWXTI-Xr-X

1
1
1
1
1
1
1
1
1
1
1
it
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

35000
139904
7
75992
44664
35000
182352
20
10320
14400
84328
14416
18496
14408
43080
71752
26696
423312
10104
88280
30904
584072
14328
26696
35032

=N N
WONOO OO W

WWwWwwwwwww

[=W N
N Woooe = Ww

setupcon

sh -> dash

sh.distrib -> dash

sleep

ss

static-sh -> busybox
stty

su

sync

systemctl

systemd -> /lib/systemd/systemd
systemd-ask-password
systemd-escape
systemd-hwdb
systemd-inhibit
systemd-machine-id-setup
systemd-notify
systemd-sysusers
systemd-tmpfiles
systemd-tty-ask-password-agent
tar

tempfile

touch

true

udevadm

ulockmgr_server

umount

uname

-FWXI'-Xr-X
TrwXrwxrwx
Trwxrwxrwx
-FWXI -Xr-X
-TWXI'-Xr-X
LrwxXrwxrwx
-TWXI'-Xr-X
-FWSI-Xr-X
-FWXI'-Xr-X
-TWXI -XI-X
Trwxrwxrwx
-FWXI -Xr-X
-TWXI -Xr-X
-FWXI' -XI-X
-TWXI'-Xr-X
-FWXI -Xr-X
-FWXI -Xr-X
-TWXI -XI-X
-TWXI'-Xr-X
-FWXI -Xr-X
-TWXI'-Xr-X
-FWXI'-XIr-X
-TWXI'-XIr-X
-FWXI -Xr-X
-FWXI -Xr-X
-TWXI -XI-X
-TWSI-Xr-x
-FWXI -Xr-X

L S S S T o T T e S S Sy =Y

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

39103
4

4
35000
139904
7
75992
44664
35000
182352
20
10320
14400
84328
14416
18496
14408
43080
71752
26696
423312
10104
88280
30904
584072
14328
26696
35032

Apr
Aug
Aug
Jan
May
Mar
Jan
Mar
Jan
May
May
May
May
May
May
May
May
May
May
May
Jan
Dec
Jan
Jan
May
Aug
Mar
Jan

=N e e N
WONOOF OO W

WWwwwwwwww

2019
2018
2018
2018
10:40
2019
2018
2019
2018

07:
07:
07:
07:
07:
07:
07:
07:
07:
07:
07:

£10)
£10)
£10)
£10)
£10)
30
E10)
£10)
£10)
£10)
E10)

2019
2017
2018
2018

07:

E10)

2016

125

23

2018

setupcon

sh -> dash
sh.distrib -> dash
sleep

Ss

static-sh -> busybox
stty

su

sync

systemctl

systemd -> /lib/systemd/systemd
systemd-ask-password
systemd-escape

systemd-hwdb

systemd-inhibit
systemd-machine-id-setup
systemd-notify
systemd-sysusers
systemd-tmpfiles
systemd-tty-ask-password-agent
tar

tempfile

touch

true

udevadm

ulockmgr_server

umount

uname

Example: rdsecret

main.c
#include <stdio.h> if (pw)
#include <string.h> {
#include <stdlib.h> printf("EUID: %d, EUSER: %s.\n", euid, pw->pw_name);
#include <unistd.h> }
#include <sys/types.h>
#include <pwd.h> print_flag();
int main(int argc, char *argv[]) return(0);
{ }

FILE *fp = NULL;
char buffer[100] = {0};

/I get ruid and euid

uid_t uid = getuid();

struct passwd *pw = getpwuid(uid);
if (pw)

{

}

printf("UID: %d, USER: %s.\n", uid, pw->pw_name);

uid_t euid = geteuid();
pw = getpwuid(euid);

void print_flag()

{
FILE *fp;
char buffMAX_FLAG_SIZE];
fp = fopen("flag","r");
fread(buff, MAX_FLAG_SIZE, 1, fp);
printf("flag is : %s\n", buff);
fclose(fp);

}

https://mp.weixin.qq.com/s/GRY5tbRa3Oa-mD8PA4P2Xg

Why do we need Set-UID programs?

Many system tasks require privileged access, but should be safely usable by
unprivileged users.

Examples:

Changing your password (passwd)
Mounting devices

Modifying system configuration
Managing network settings

Running all user programs as root would be disastrous for security.

Why do we need Set-UID programs?

Unix introduces setuid programs:

e A program file is marked with a special bit (setuid)
e When executed, the process runs with the file owner’s privileges
e Commonly owned by root

This allows:

Temporary privilege elevation for a specific task

Microsoft Windows' solution

Windows does not use file-based privilege elevation.

Instead, it uses:

e Access tokens
e User Account Control (UACQ)
e Privilege separation with services

Typical pattern:

1. User program runs unprivileged

2. Requests privileged action
3. Windows service (running as SYSTEM/Admin) performs the action after

approval

Privilege is controlled by the OS security subsystem, not the executable file.

Background Knowledge:
ELF Binary Files

ELF Files

The Executable and Linkable Format (ELF) is a common standard file
format for executable files, object code, shared libraries, and core

dumps. Filename extension none, .axf, .bin, .elf, .o, .prx, .puff, .ko, .mod
and .so

Contains the program and its data. Describes how the program should
be loaded (program/segment headers). Contains metadata describing
program components (section headers).

Command file

:~$ file /bin/ls
/bin/1ls: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically lin

ked, interpreter /1ib64/1d-1linux-x86-64.s50.2, BuildID[shal]=2f15ad836be3339decOe
2e6a3c637e08e48aacbd, for GNU/Linux 3.2.0, stripped

:~$

:~$ readelf -a /bin/ls

ELF Header:
Magic: 7f 45 4c 46 02 01
Class:
Data:
Version:
0S/ABI:
ABI Version:
Type:
Machine:
Version:
Entry point address:
Start of program headers:
Start of section headers:
Flags:
Size of this header:
Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

Section header string table index:

Section Headers:

01 00 00 00 0O 00 0O 00 0O 00

ELF64

2's complement, little endian
1 (current)

UNIX - System V

0

DYN (Shared object file)
Advanced Micro Devices X86-64
0x1

0x67d0

64 (bytes into file)

140224 (bytes into file)

0x0

64 (bytes)

56 (bytes)

13

64 (bytes)

30

29

[Nr]
[o]
1]
2]
3]
a]
5]
6]
7]
8]

9]

Name
Size

0000000000000000
.interp
000000000000001c
.note.gnu.propert
0000000000000020
.note.gnu.build-1i
0000000000000024
.note.ABI-tag
0000000000000020
.gnu.hash
00000000000000e4
.dynsym
0000000000000d08
.dynstr
000000000000064C
.gnu.version
0000000000000116
.gnu.version_r
0000000000000070
.rela.dyn
0000000000001350
.rela.plt
00000000000009T0
.init
000000000000001b

Type

EntSize

NULL
0000000000000000
PROGBITS
0000000000000000
NOTE
0000000000000000
NOTE
0000000000000000
NOTE
0000000000000000
GNU_HASH
0000000000000000
DYNSYM
0000000000000018
STRTAB
0000000000000000
VERSYM
0000000000000002
VERNEED
0000000000000000
RELA
0000000000000018
RELA
0000000000000018
PROGBITS
0000000000000000
PROGBITS
00OONOAOANOONOAA10O

Address
Flags Link Inf
0000000000000000
0
0000000000000318
A (¢]
0000000000000338
A 0
0000000000000358
A 0
000000000000037¢
A 0
00000000000003a0
A 6
0000000000000488
A 7
0000000000001190
A 0
00000000000017dc
A 6
0000EEEEEERN18f8
A 7
0000000000001968
A 6
0000000000002cb8
AI 6 2
0000000000004000
AX 0
0000000000004020
AX 0

o

[}

(¢]

(¢]

(¢]

(5}

0

1

(¢]

[}

3l

(¢]

5

(<]

0

offset
Align
00000000
0
00000318
i
00000338
8
00000358
4
0000037c
4
00000330
8
00000488
8
00001190
1
000017dc
2
00001818
8
00001968
8
00002cb8
8
00004000

4
00004020
16

INTERP: defines the library that should be
used to load this ELF into memory.

LOAD: defines a part of the file that should be
loaded into memory.

Sections:

.text: the executable code of your program.
.plt and .got: used to resolve and dispatch
library calls.

.data: used for pre-initialized global writable
data (such as global arrays with initial values)
.rodata: used for global read-only data (such
as string constants)

.bss: used for uninitialized global writable
data (such as global arrays without initial
values)

Tools for ELF

gcc to make your ELF.

readelf to parse the ELF header.

objdump to parse the ELF header and disassemble the source code.

nm to view your ELF's symbols.

patchelf to change some ELF properties.

objcopy to swap out ELF sections.

strip to remove otherwise-helpful information (such as symbols).

kaitai struct (https://ide.kaitai.io/) to look through your ELF interactively.

https://ide.kaitai.io/

Background Knowledge:
Memory Map of a Linux Process

Memory Map of Linux Process (32 bit)

Each process in a multi-tasking OS runs in its own memory sandbox.

This sandbox is the virtual address space.
e In 32-bit mode is a 4GB block of memory addresses.
e On modern Linux x86-64 systems, the CPU supports 64-bit virtual
addresses, but Linux actually uses only 48 bits (and on newer
systems up to 57 bits with 5-level paging).

These virtual addresses are mapped to physical memory by page tables,
which are maintained by the operating system kernel and consulted by

the processor.

Memory Map of Linux Process (32 bit system)

1GB //f
L

3GB

~

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

9xc0000008 == TASK_SIZE

} Random stack offset

Stack (grows down)

Il

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

]_r brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data o

end_code https://manybutfinite.com/pos
0%08048000 anatomy-of-a-program-in-me

5 mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

NULL Pointer in C/C++

int * pInt = NULL,;
In possible definitions of NULL in C/C++:

#define NULL ((char *)0)
#define NULL O

//since C++11
#define NULL nullptr

/proc/pid_of _process/maps

Example processmap.c

#include <stdio.h>
#include <stdlib.h>

int main()

{
getchar();
return O;

}

cat /proc/pid/maps
pmap -X pid
pmap -X pidof pm"”

1GB =«

368

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

Stack (grows down)

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

U

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

ziming@ziming-ThinkPad:
21732
Address Perm Offset Device

./pm

56569000 r-xp 00000000 103:02 28575310 4
56562000 r--p 00000000 103:02 28575310 4
5656b000 rw-p 00001000 103:02 28575310 4
57cf2000 rw-p 0000000 0O0:00 0 136
f7d73000 r-xp 00000000 103:02 2883591 1876
f7f48000 ---p 001d5000 103:02 2883591 4
f7f49000 r--p 001d5000 103:02 2883591 8
f7f4b000 rw-p 001d7000 103:02 2883591 4
f7f4c000 rw-p 00000000 00:00 (¢] 12
f7f75000 rw-p 000OOEEO 00:00 0 8
f7f77000 r--p 00000000 00:00 0
f7f7a000 r-xp 00000000 00:00 0
f7f7c000 r-xp 00000000 103:02 2883587
f7fa2000 r--p 00025000 103:02 2883587
f7fa3000 rw-p 00026000 103:02 2883587
ffef3000 rw-p 000OOEEO 00:00 0

09xcoe00e08 == TASK_SIZE

P Random stack offset

> RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

program break
brk

start_brk
\

» Random brk offset

end_data

start_data
end_code

0x08048000
]

4 4
4 4
4 4
4 4
TIPNTTD

(<]
(<]

[
S

NDSA D BHLOOO®®S
[
H

NS DS DOOOO®O®NSO®

[y
(=Y

988 988

4

H

I ~
IS ~
NBLADBODO®OOARON B A

[y

[y

0

NDADDLROOOOOLOOO AL DD

0

[cNclcNoNoNoNoNoNoNoNoNoNoNoNol

(<]

(BN <NoNoNoNoNoNoNoNoNoNoNoNo Moo

(<]

[clcNcNolNcNoNoNoNoNoNoNoNoRoNol

[<]

[cloNcoNoNoNoNoNoNoNoNoNoNoNoNol

~/Dropbox/myTeaching/System Security - Attack and Defense for Binaries UB 2020/code/processmap$ pmap -X 21732

Inode Size Rss Pss Referenced Anonymous LazyFree ShmemPmdMapped Shared Hugetlb Private_Hugetlb Swap

[cNcNoNoNoNoNoNoNoNoNoNoNoNoNoNol

SwapPss Locked
0

[cNcNcoNoNoNoNoNoNoNoNoNoNoNoNol
[clcloNoNoNoNoNoNoNoNoNoNoNoNoNol

Mapping
pm

pm

pm
[heap]
libc-2.
1libc-2.
libc-2.
libc-2.

[vvar]
[vdso]
1d-2.27.s0
1d-2.27.s0
1d-2.27.s0
[stack]

KB

Memory Map of Linux Process (64 bit system)

ziming@ziming-ThinkPad:~/Dropbox/myTeaching/System Security - Attack and Defense for Binaries UB 2020/code/processmap$ pmap -X 22891
22891: . /pm64
Address Perm Offset Device Inode Size Rss Pss Referenced Anonymous LazyFree ShmemPmdMapped Shared_Hugetlb Private_Hugetlb Swap SwapPss Locked Mapping

55bf7ae37000 r-xp 00000000 103:02 28577490 4 (5} 0 0 0 0 pm64
55bf7b037000 r--p 000OOEEO 103: 28577490 pm64
55bf7b038000 rw-p 00001000 103: 28577490 pm64
55bf7ccOcO00 rw-p 0OOOOEEO 00: 0 [heap]
7fc7ebdb600O r-xp 00000000 103: 660090 libc-2.
7fc7ebf9deee ---p 001e7000 103: 660090 libc-2.
7fc7ec19d000 r--p 001e7000 103: 660090 libc-2.
7fc7ec1al1000 rw-p 001ebBod : 660090 libc-2.
7fc7ec1a3000 rw-p 00000000 0
7fc7ec1a7000 r-xp 00000000 660062
7fc7ec3a6000 rw-p 00000000 H 0
7fc7ec3cefdO r--p 00027000 H 660062
7fc7ec3cf00O rw-p 00028000 : 660062
7fc7ec3d0000 rw-p 00000000 . (]
7ffe05803000 rw-p 00000000
7ffe058b9000 r--p 00000000
7ffe058bcOOO r-xp 0OOOOOOO

ffffffffff600000 r-xp 0OOOOOOO

(<]
(<]

[y
[

[
[

1d-2.27.s0

1d-2.27.s0
1d-2.27.s0

oy
OO ONALDLDOONODOOOU A DD

oy
OQOONAL,DLOONODOOOO S DD

[stack]
[vvar]
[vdso]
[vsyscall]

[cllcoloooNoNoNoNoNoNoNoNoNoNoRNoRol
[cNcoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[cNcNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[clcNoNoNoNoNoNoNoNoNoNoNoNoNoRoNol
[clcoloNoNoNooNoNoNoNoBoNoNoNooRNoRol

[cHI-NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[l < NoNoNoNoNoNoNoNoNoNoNoNoNoNo Mool

KB

Background Knowledge:
System Calls

What are System Calls?

When a process needs to invoke a kernel service, it invokes a procedure
call in the operating system interface using special instructions (not a
call instruction in x86). Such a procedure is called a system call.

The system call enters the kernel; the kernel performs the service and

returns. Thus a process alternates between executing in user space and
kernel space.

System calls are generally not invoked directly by a program, but rather
via wrapper functions in glibc (or perhaps some other library).

Popular System Call

On Unix, Unix-like and other POSIX-compliant operating systems,

popular system calls are open, read, write, close, wait, exec, fork, exit,
and Kkill.

Many modern operating systems have hundreds of system calls. For
example, Linux and OpenBSD each have over 300 different calls, FreeBSD
has over 500, Windows 7 has close to 700.

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Open_(system_call)
https://en.wikipedia.org/wiki/Read_(system_call)
https://en.wikipedia.org/wiki/Write_(system_call)
https://en.wikipedia.org/wiki/Close_(system_call)
https://en.wikipedia.org/wiki/Wait_(system_call)
https://en.wikipedia.org/wiki/Exec_(system_call)
https://en.wikipedia.org/wiki/Fork_(system_call)
https://en.wikipedia.org/wiki/Exit_(system_call)
https://en.wikipedia.org/wiki/Kill_(system_call)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/FreeBSD

Glibc interfaces

Often, but not always, the name of the wrapper function is the same as
the name of the system call that it invokes.

For example, glibc contains a function chdir() which invokes the
underlying "chdir" system call.

Tools: strace & ltrace

ctf@misc_firstflag 64:/$ strace ./misc_firstflag 64

execve("./misc firstflag 64", ["./misc firstflag 64"], Ox7fffffffe680 /* 17 vars *
access("/etc/suid-debug”, F OK) = -1 ENOENT (No such file or directory)
brk(NULL) = 0x555555559600

arch prctl(0x3001 /* ARCH 7?7 */, Ox7fffffffe5a®) = -1 EINVAL (Invalid argument)
fentl(0, F_GETFD) 0

fentl(1, F_GETFD) 0

fentl(2, F_GETFD) 0

access("/etc/suid-debug", F OK) -1 ENOENT (No such file or directory)
access("/etc/1d.so.preload", R OK) = -1 ENOENT (No such file or directory)
openat (AT _FDCWD, "/etc/ld.so.cache", 0 RDONLY|O CLOEXEC) = 3

fstat(3, {st mode=S IFREG|0644, st size=47355, }) =0

mmap (NULL, 47355, PROT READ, MAP PRIVATE, 3, 0) = Ox7ffff7fbfeee

close(3) =0
openat (AT _FDCWD,
read(3,
pread64(3
pread64(3

(3

"/1ib/x86 64-linux-gnu/libc.so0.6", 0 RDONLY|O (LOEXE(} = 3
"\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\O\1\0‘0 0\360q\2\6\ \ , 832) = 832
, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\6\0\6@\0\ .., 184, 64)

, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\6\ \0\0\300\4\0\0‘0\) 0 32, 848)
pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\O\1t\233\222%\274\ "..., 68, 880)
fstat(3, {st _mode=S IFREG|0755, st size=2029224, ...}) =0
mmap (NULL, 8192, PROT READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, ©) = Ox7ffff7fbdeee
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\6\0\0\0@\0\0\6\0\6\0\06@\0\0\0\6\0\6\0"..., 784, 64) = 784
pread64(3, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\0\2\6\0\300\4\ \0\3\0\0\0\6\0\6\0", 32, 848) = 32
pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0O\t\233\222%\274\26 \31\331\326\16\204\276X>\263"..., 68, 880)
mmap (NULL, 2036952, PROT_READ, MAP_PRIVATE|MAP DENYWRITE, 3, ©) = 0x7ffff7dcbeee
mprotect (Ox7ffff7df0000, 1847296, PROT NONE) = ©
mmap (0x7ffff7dfe000, 1540096, PROT READ|PROT EXEC, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3
mmap (0x7ffff7f68000, 303104, PROT READ, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x19d000) = Ox7ffff7f68000
mmap (0x7ffff7fb3000, 24576, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x1e7000) = Ox7ffff7fb3000
mmap (Ox7ffff7fb9060, 13528, PROT_READ|PROT WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 6) = Ox7ffff7fb90ee
close(3) =0
arch_prctl(ARCH_SET FS, Ox7ffff7fbe540) = ©
mprotect (Ox7ffff7fb3000, 12288, PROT READ) = ©
mprotect(0x555555557000, 4096, PROT_READ) = ©
mprotect (Ox7ffff7ffc000, 4096, PROT _READ) = ©
munmap(Ox?ffff7fbf000 47355) =0
fstat({st_mode=S_IFCHR|0620, st rdev= makedev(O(BB 8)5 e k) =8
hrk(NULL) = 0x555555559000
brk(0x55555557a000) = 0x55555557a000
write(1l, "Congratulations on getting your " , 45Congratulations on getting your first flag!
) =45
openat (AT _FDCWD
write(l, "Error:
) = 36
exit group(0)
+++ exited with 0 +++

0x25000) = Ox7ffff7dfe000

"/flag", O_RDONLY) -
Cannot open the flag file"...

-1 EACCES (Permission denied)
, 36Error: Cannot open the flag file!!!

misc/firstflag
main.c

int main(int argc, char *argvl])

{

}

printf("Congratulations on getting your first flag!'\n");
print_flag();

flag.h

int print_flag()

{

FILE *fp = NULL;
char buff[MAX_FLAG_SIZE] = {0};

fp = fopen("/flag", "r");

if (fp ==
{

NULL)

printf("Error: Cannot open the flag file!!\n");
return 1;

fread(buff, MAX_FLAG_SIZE - 2, 1, fp);
printf("The flag is: %s\n", buff);
fclose(fp);

return O;

Tools: strace & ltrace

ctf@misc_firstflag 64:/$ strace ./misc_firstflag 64

execve("./misc firstflag 64", ["./misc firstflag 64"], Ox7fffffffe680 /* 17 vars */) = 0
access("/etc/suid-debug”, F_OK) = -1 ENOENT (No such file or directory)

brk(NULL) = 0x555555559600

arch prctl(0x3001 /* ARCH 7?7 */, Ox7fffffffe5a®) = -1 EINVAL (Invalid argument)

fentl(0, F GETFD) = 0

fentl(1, F_GETFD) 0

fentl(2, F_GETFD) 0

access("/etc/suid-debug", F OK) -1 ENOENT (No such file or directory)
access("/etc/1d.so.preload", R OK) = -1 ENOENT (No such file or directory)

openat (AT _FDCWD, "/etc/ld.so.cache", 0 RDONLY|O CLOEXEC) = 3

fstat(3, {st _mode=S IFREG|0644, st size=47355, ...}) = ©

mmap (NULL, 47355, PROT READ, MAP PRIVATE, 3, 0) = Ox7ffff7fbfeee

close(3) =0

openat(AT FDCWD, "/1ib/x86 64-1linux-gnu/libc.so.6", 0 RDONLY|0 CLOEXEC)

read(3, \177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\O\1\0‘0 O‘360q\7 \6\ ., 832) = 832
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\06\0\0\0\0\0\ \ \0" , 784, 64) = 784
pread64(3, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\0\2\0\0\360\4\0\ \

pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\O\t\233\222% 774\760\320 31 \331

fstat(3, {st _mode=S IFREG|0755, st size=2029224, ...}) =

mmap (NULL, 8192, PROT READ|PROT_WRITE, MAP_PRIVATE|MAP Al M ' -1, 0) = Ox7ffff7fbdeee
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\6\0\ \0\0) » , 784, 64) = 784
pread64(3, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\6\0\3\ : 32, 848) =

pread64(3,
mmap (NULL, 2636952, PROT READ, MAP_PRIVATE|MAP DENYWRITE, 3, 0) =
mprotect (0x7ffff7df0000, 1847296, PROT NONE) = 0

mmap (0x7ffff7dfee00, 1540096, PROT READ|PROT EXEC, MAP_PRIVATE|MAP FIXED|MAP DENYWRITE, 3, ©x25000)

Ox7ffff7dcboee

mmap (0x7ffff7f68000, 303104, PROT READ, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, 0x19d6@e) =
mmap (Ox7ffff7fb3000, 24576, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, Ox
mmap (Ox7ffff7fb9060, 13528, PROT READ|PROT WRITE, MAP PRIVATE|MAP FIXED|MAP ANONYMOUS, -1, 0)
close(3) =0

arch_prctl(ARCH_SET FS, Ox7ffff7fbe540) = ©

mprotect (Ox7ffff7fb3000, 12288, PROT READ) = ©

mprotect(0x555555557000, 4096, PROT_READ) 0

mprotect (Ox7ffff7ffc000, 4096, PROT _READ) = ©

munmap (0x7ffff7fbfeee, 47355) =0

fstat(l, {st_mode=S IFCHR|0620, st rdev=makedev(0x88, 0), ...}) =0
brk(NULL) = 0x555555559000
brk(0x55555557a000) = 0x55555557a000

write(1l, "Congratulations on getting your "
) =45

openat (AT FDCWD, "/flag", O RDONLY) = -1 EACCES (Permission denied)

write(1l, "Error: Cannot open the flag file"..., 36Error: Cannot open the flag file!!!
) = 36

exit group(0)

+++ exited with 0 +++

, 68, 880)

"\4\0\0\0\24\0\0\0\3\0\0\0GNU\O\t\233\222%\274\260 70\31\331\ 26‘10\204\2767>\263”A..,

Ox7ffff7768000

= Ox7ffff7fb9600

, 45Congratulations on getting your first flag!

Execve - first system call

Access - check file permission

Brk - check data segment/heap

Arch_prctl - set architecture-specific thread state
Fcntl - manipulate file descriptor

Openat - similar to open

Fstat - get file status

Mmap - map files or devices into memory
Close

Read

Pread64 - similar to read

Mprotect - set protection on a region of memory
Munmap - map files or devices into memory
Write

Exit_group

68, 880) = 68

= Ox7Tfff7df0000

= Ox7ffff7fb3600

Use “man 2 syscall_name” to check out its usage

Making a System Call in x86/64 Assembly

On x86/x86-64, most system calls rely on the software interrupt.

A software interrupt is caused either by an exceptional condition in the
processor itself, or a special instruction (the int 0x80 instruction or
syscall instruction).

For example: a divide-by-zero exception will be thrown if the processor's
arithmetic logic unit is commanded to divide a number by zero as this
instruction is in error and impossible.

Making a System Call in x86 Assembly (INT 0x80)

X86 (32-bit)
Compiled from Linux 4.14.0 headers.
NR syscall name references %eax arg0 (%ebx) arg1 (%ecx) arg2 (%edx) arg3 (%esi) arg4 (%edi) arg5 (%ebp)
0 restart_syscall man/ cs/ 0x00 - - - - - -
1 exit man/ cs/ 0x01 int error_code - - - - -
2 fork man/ cs/ 0x02 - - - - - -
3 read man/ cs/ 0x03 unsigned int fd char *buf size_t count - - -
4 write man/ cs/ 0x04 unsigned int fd const char *buf size_t count - - -
5 open man/ cs/ 0x05 const char int flags umode_t mode - - -
*filename

6 close man/ cs/ 0x06 unsigned int fd - - - - -

7 waitpid man/ cs/ 0x07 pid_t pid int *stat_addr int options - - -

8 creat man/ cs/ 0x08 const char umode_t mode - - - -
*pathname

9 link man/ cs/ 0x09 const char const char - - - -
*oldname *newname

10 unlink man/ cs/ 0x0a const char - - - - -
*pathname

1 execve man/ cs/ 0x0b const char const char *const const char *const - - -
*filename *argv *envp

12 chdir man/ cs/ 0x0c const char - - - - -
*filename

13 time man/ cs/ 0x0d time_t *tloc - - - - -

14 mknod man/ cs/ 0x0e const char umode_t mode unsigned dev - - -
*filename
15 chmod man/ cs/ 0x0f const char umode_t mode - - - -
*filename
ar [D AR —mmemd mmk Nnoan P PR E prap— i b mwmii- s

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

Making a System Call in x86 Assembly

xor
push
push
push
mov
push
push
mov
mov
int

eax,eax
eax
0x68732f2f
0x6e69622f
ebx,esp
eax
ebx
ecx,esp
al,0xb

0x80

Dec HxOct Char Dec Hx Oct Hitml Chr |Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL {(null) 32 20 040 Space| 64 40 100 «#64; [96 60 140 `
1 1 001 50H (start of heading) 33 21 D41 !: ! 65 41 101 A A 97 61 141 &«#97; a
2 2 002 5TX (start of text) 34 22 042 &«#34:; " 66 42 102 &«#66; B 95 62 142 &«#98; Db
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C | 99 63 143 &«#99; ¢
4 4 004 EOT {end of transmission) 36 24 044 $ § 65 44 104 &«#68; D |100 64 144 &#l00; d
5 5 005 ENQ (encgquiry) 37 25 045 % % 69 45 105 &«#69; E |101 65 145 l01; e
6 6 006 ACK {acknowledge) 38 26 046 & & 70 46 106 «#70; F (102 66 146 f £
7 7 007 BEL (bell) 39 27 047 ' ! 71 47 107 &«#71; G |103 67 147 g
§ 8§ 010 BS (backspace) 40 28 050 (| 72 45 110 H H (104 68 150 h h
9 9 011 TAE (horizontal tab) 41 29 051):) 73 49 111 &«#73; I [105 69 151 &#l05; 1

10 A 012 LF (NL line feed, new line)| 42 2A 052 * * 74 44 112 «#74; J |106 64 152 &#l06; J

11 B 013 VT (wertical tab) 43 2B 053 + + 75 4B 113 «#75; K (107 6B 153 k k

12 C 014 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 L L |108 6C 154 l 1

13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M M |109 6D 155 m n

14 E 016 50 (shift out) 46 2E 056 &«#46; . 78 4E 116 N N |110 6E 156 l0; n

15 F 017 SI (shift in) 47 2F 057 «#47; / 79 4F 117 «#79; 0 |111 6F 157 &#ll1; o

16 10 020 DLE (data link escape) 43 30 060 0 0 80 50 120 &«#80; P |112 70 160 p p

17 11 021 DCl (dewice control 1) 49 31 061 1 1 8l 51 121 &«#81; 0 |113 71 161 q

18 12 022 DC2 (dewvice control 2) 50 32 062 &«#50; 2 82 52 122 «#B82; R |114 72 162 &#ll4; ¢

19 13 023 DC3 (dewvice control 3) 51 33 063 3 3 83 53 123 «#83; 5 |115 73 163 s s

20 14 024 DC4 (dewice control 4) 52 34 064 &«#52; 4 84 54 124 «#84; T |116 74 164 &#ll6; ©

21 15 025 NAK (negatiwve acknowledge) 53 35 065 &«#53; 5 85 55 125 «#85; U |117 75 165 &#l17; u

22 16 026 5YN (synchronous idle) 54 36 066 6 6 86 56 126 &«#86; V |118 76 166 v v

23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 «#87; W |119 77 167 w w

24 18 030 CAN (cancel) 56 38 070 &«#56; 8 88 58 130 &«#88; X |120 78 170 x x

25 19 031 EM (end of medium) 57 39 071 «#57; 9 89 59 131 Y YV |121 79 171 y ¥

26 1A 032 SUE (substitute) 58 34 072 : : 90 SA 132 «#90; Z |122 7A 172 z 2z

27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 133 «#91; [(123 7B 173 { {

28 1C 034 F5 (file separator) 60 3C 074 &«#60; < 92 S5C 134 \ \ |124 7C 174 &#l24;

29 1D 035 G5 (group separator) 61 3D 075 &«#61; = 93 5D 135]] |125 7D 175 } }

30 1E 036 RS (record separator) 62 3E 076 > > 94 S5E 136 &«#94; ~ |126 7E 176 ~ ~

31 1F 037 US ({unit separator) 63 3F 077 ? ? 95 SF 137 &«#95; _ |127 7F 177 DEL

http://shell-storm.org/shellcode/files/shellcode-827.php

Source: www.LookupTables.com

http://shell-storm.org/shellcode/files/shellcode-827.php

Making a System Call in x86 Assembly

xor
push
push
push
mov
push
push
mov
mov
int

eax,eax
eax
0x68732f2f
0x6e69622f
ebx,esp
eax
ebx
ecx,esp
al,0xb

0x80

stack

High address :

esp

-

Lom1address§

Making a System Call in x86 Assembly

xor
push
push
push
mov
push
push
mov
mov
int

eax,eax
eax
0x68732f2f
0x6e69622f
ebx,esp
eax
ebx
ecx,esp
al,0xb

0x80

stack

High address :

esp

- eax

-

Lom1address§

Making a System Call in x86 Assembly

stack
High address
Xor eax,eax :
push eax eax
push 0x68732f2f 50X68732f2f
push 0x6e69622f s

esp

mov ebx,esp .
push eax /
push ebx 5

MoV ecx,esp
mov al,0xb
int 0x80

Low address

Making a System Call in x86 Assembly

stack
High address
Xor eax,eax :
push eax eax
push 0x68732f2f §0X68732f2f
push 0x6e69622f s

esp

mov ebx,esp .
push eax /
push ebx 5

MoV ecx,esp
mov al,0xb
int 0x80

Low address

Making a System Call in x86 Assembly

EXECVE(2) Linux Programmer's Manual

NAME
execve - execute program

SYNOPSIS
#include <unistd.h>

int execve(const char *filename, char *const argv|[],
char *const envpl[]l);

/bin/sh, Ox0 |
0x00000000 Address of /bin/sh, 0x00000000 |

execve(“/bin/sh”, address of string “/bin/sh”, 0)

Making a System Call in x86_64 (64-bit) Assembly

x86_64 (64-bit)

Compiled from Linux 4.14.0 headers.

NR syscall name references %rax argo0 (%rdi) arg1 (%rsi) arg2 (%rdx) arg3 (%r10) arg4 (%r8) arg5 (%r9)
0 read man/ cs/ 0x00 unsigned int fd char *buf size_t count - -
1 write man/ cs/ 0x01 unsigned int fd const char *buf size_t count - -
2 open man/ cs/ 0x02 const char int flags umode_t mode - -

*filename
3 close man/ cs/ 0x03 unsigned int fd - - - -
4 stat man/ cs/ 0x04 const char struct - = :
*filename _ old_kernel_stat
*statbuf
5 fstat man/ cs/ 0x05 unsigned int fd struct - - -
_old_kernel_stat
*statbuf
6 Istat man/ cs/ 0x06 const char struct - - -
*filename _ old_kernel_stat
*statbuf
7 poll man/ cs/ 0x07 struct pollfd *ufds unsigned int nfds int timeout - -
8 Iseek man/ cs/ 0x08 unsigned int fd off_t offset unsigned int - 2
whence
9 mmap man/ cs/ 0x09 ? ? ? ? s

10 mprotect man/ cs/ 0x0a unsigned long size_tlen unsigned long prot = =

start

i munmap man/ cs/ 0x0b unsigned long size_tlen - - -

addr

12 brk man/ cs/ 0x0c unsigned long brk - - - -
13 rt_sigaction man/ cs/ 0x0d int const struct struct sigaction * size_t -

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

sigaction *

Making a System Call in x86_64 (64-bit) Assembly

NR

59

syscall name

execve

references %rax

man/ cs/

0x3b

arg0 (%rdi) arg1 (%rsi) arg2 (%rdx)
const char const char *const const char *const
*filename *argv *envp
push rax

xor rdx, rdx

XOr rsi, rsi

mov rbx,'/bin//sh'
push rbx

push rsp

pop rdi

mov al, 59
syscall

arg3 (%r10)

arg4 (%r8)

arg5 (%r9)

SYSTEM AND LIBRARY CALLS EVERY PROGRAMMER NEEDS TO KNOW

LINUX

SYSTEM

O’REILLY" ROBERT LOVE

Background Knowledge:
Piping

Channels of Communication for Linux Process

Every process in Linux has three initial, standard channels of
communication:

e Standard Input (stdin, fd=0) is the channel through which the
process takes input. For example, your shell uses Standard Input to
read the commands that you input.

e Standard Output (stdout, fd=1) is the channel through which
processes output normal data, such as the flag when it is printed to
you in previous challenges or the output of utilities such as /s.

e Standard Error (stderr, fd=2) is the channel through which processes
output error details. For example, if you mistype a command, the
shell will output, over standard error, that this command does not
exist.

Examples

Redirecting output > or 1>
echo hi > asdf echo hi 1> asdf

Appending output >>
echo hi >> asdf

Redirecting errors 2>
/challenge/run 2> errors.log

Redirecting input <
rev < messagefile

Channels of Communication for Linux Process

e Process can also take input from command line arguments

Is -al
cat /flag

cat 1.txt 2.txt 3.txt

Pipe

The | (pipe) operator. Standard output from the command to the left of
the pipe will be connected to (piped into) the standard input of the
command to the right of the pipe.

echo hello-world | wc -c

Background Knowledge:
Environment and Shell Variables

Environment and Shell Variables

Environment and Shell variables are a set of dynamic named values,
stored within the system that are used by applications launched in shells.

KEY=value
KEY="Some other value"
KEY=value1:value2

The names of the variables are case-sensitive (UPPER CASE).
Multiple values must be separated by the colon : character.
There is no space around the equals = symbol.

Environment and Shell Variables

Environment variables are variables that are available system-wide and
are inherited by all spawned child processes and shells.

Shell variables are variables that apply only to the current shell instance.
Each shell such as zsh and bash, has its own set of internal shell

variables.

Common Environment Variables

USER - The current logged in user.

HOME - The home directory of the current user.

EDITOR - The default file editor to be used. This is the editor that will be
used when you type edit in your terminal.

SHELL - The path of the current user’s shell, such as bash or zsh.
LOGNAME - The name of the current user.

PATH - A list of directories to be searched when executing commands.
LANG - The current locales settings.

TERM - The current terminal emulation.

MAIL - Location of where the current user’s mail is stored.

Commands

env - The command allows you to run another program in a custom
environment without modifying the current one. When used without an
argument it will print a list of the current environment variables.
printenv - The command prints all or the specified environment
variables.

set - The command sets or unsets shell variables. When used without an
argument it will print a list of all variables including environment and
shell variables, and shell functions.

unset - The command deletes shell and environment variables.

export - The command sets environment variables

The environment variables
live towards the top of the
stack, together with

command line arguments.

-

3GB <

N

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Seguentatinn ;

0xc0000B0e == TASK_SIZE

} Random stack offset

Stack (grows down)

}>RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

ﬁ brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data
end_code

0x08048000

%]

Background Knowledge:
Executable and Linkable Format (ELF)

ELF Files

The Executable and Linkable Format (ELF) is a common standard file
format for executable files, object code, shared libraries, and core

dumps. Filename extension none, .axf, .bin, .elf, .o, .prx, .puff, .ko, .mod
and .so

Contains the program and its data. Describes how the program should
be loaded (program/segment headers). Contains metadata describing
program components (section headers).

typedef struct {

unsigned char e_ident[16];

ET_EXEC | ET_DYN «— uint16_t e_type;
EN . &— yuint16_t e_machine;
EV_CURRENT +— uint32 t e_version;
J uinté4_t e_entry;
0 1 290850878 I uint64_t e_phoff;
Tlel 11 ! uint64_t e_shoff;
AL ‘ uint32_t e_flags;
/’r//o(i‘:\/o?v e uint16_t e_ehsize;
/‘/JJ:’»,,%/C@"}L(:' uint16_t e_phentsize;
Y % ' uint16_t e_phnum;
N uint16_t e_shentsize;
* uint16_t e_shnum;
¥ uint16_t e_shstrndx;
' } E1f64_Ehdr;
Header { Executable header P PF X | PF_W | PF_R
P PT_LOAD | PT_DYNAMIC | PT_INTERP | ...
. typedef struct {
% uint32_t p_type; ——
Program e uint32_t p_flags; ——
headers < uint64_t p_offset;
Program header uint64_t p_vaddr;
uint64_t p_paddr;
bS uint64_t p_filesz;
\ %N uint64_t p_memsz;
- N uint64_t p_align;
M.} ELf64_Phdr;
Important sections:
.interp
.init
.plt
Jtext
fini
Sections < -rodata
.data
Section .bss
.shstrtab
SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR
SHT_PROGBITS | SHT_SYMTAB | SHT_STRTAB
| SHT_RELA | SHT_DYNSYM | SHT_DYNAMIC
., typedef struct {
L o uint32_t sh_name;
r P uint32_t sh_type;
i uint64_t sh_flags;
4 uint64_t sh_addr;
. uint64_t sh_offset;

3 Section header uint64_t sh_size;
Section ¥ = S
bocdare < 2 u?ntnit shﬁhnk;

89 % uint32_t sh_info;
% uint64_t sh_addralign;
8% uint64_t sh_entsize;
L v} E1f64_Shdr;

Executable (a.out), object files
(.0), shared libraries (.a), even
core dumps.

Four types of components: an
executable header, a series of
(optional) program headers, a
number of sections, and a
series of (optional) section
headers, one per section.

Executable Header

typedef struct {
unsigned char e_ident[16];

uintl6_t
uintle_t
uint32_t
uint64_t
uint64_t
uint64_t
uint32_t
uintle_t
uintl6_t
uintl6_t
uintl6_t
uintl6_t
uintl6_t
} E1f64_Ehdr;

e_type;
e_machine;
e_version;
e_entry;
e_phoff;
e_shoff;
e_flags;
e_ehsize;
e_phentsize;
e_phnum;
e_shentsize;
e_shnum;
e_shstrndx;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Magic number and other info
Object file type Executable, obj, dyndmic lib

Architecture x86-64, Arm %/
Object file version */
Entry point virtual address */

Program
Section

header table file offset */
header table file offset */

Processor-specific flags */
ELF header size in bytes * [

Program
Program
Section
Section
Section

header table entry size */
header table entry count */
header table entry size */
header table entry count */
header string table index*/

* [O0X7F ELF ..

readelf -h /bin/ls

ELF Header:

Magic:
Class:
Data:
Version:
0S/ABI:
ABI Version:

Type:

Machine:

Version:

Entry point address:

Start of program headers:
Start of section headers:
Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

Section header string table index:

7f 45 4c 46 02 01 01 00 0O OO OO 0O 0O OO OO 0O

ELF64

2's complement, little endian
1 (current)

UNIX - System V

0

DYN (Shared object file)
Advanced Micro Devices X86-64
0x1

Ox67d0O

64 (bytes into file)

140224 (bytes into file)

0x0

64 (bytes)

56 (bytes)

13

64 (bytes)

£10)

29

Sections

The code and data in an ELF binary are logically divided into contiguous

non-overlapping chunks called sections. The structure of each section
varies depending on the contents.

The division into sections is intended to provide a convenient
organization for use by the linker.

Section Header Format

typedef struct {

uint32_t sh_name; /* Section name (string tbl index) */

uint32_t sh_type; /* Section type * [

uint64_t sh_flags; /* Section flags */

uint64_t sh_addr; /* Section virtual addr at execution */

uint64_t sh_offset; /* Section file offset */

uint64_t sh_size; /* Section size in bytes */

uint32_t sh_link; /* Link to another section */

uint32_t sh_info; /* Additional section information * [SHF WRITE | SHF ALLOC | SHF EXECINSTR | ... €—
uint64_t sh_addralign; /* Section alignment */ e e e e
uint64_t sh_entsize; /* Entry size if section holds table */ | sHr RELA | SHT DVNSYM | SHT DYNAMIC | ...

} Elf64_Shdr;

, typedef struct {

P uint32_t sh_name;
! uint32 t sh_type;
uint64_t sh_flags; —————
uint64_t sh_addr;
uint64_t sh offset;
. uint64 t sh _size;
Each section is described by its section header. Ukl A ks
uint32_t sh_info;
................... : & uint64_t sh_addralign;

\ uint64_t sh_entsize;

readelf -Sa.out “\} Ef64 Shdr;

sh_flags

SHF_WRITE: the section is writable at o |
ru nti m e . 'SPIT—_PRO;BI;S ;}:’_ASY:'.I/ABA S':I_‘SIRTAB e

| SHT_RELA | SHT_DYNSYM | SHT_DYNAMIC | ...
. , typedef struct {
SHF ALLOC: the contents of the section are .~ ‘untit shome;

u%nt32_t sh_type;
to be loaded into virtual memory when et ey v
executing the binary. wrtos S

uint32_t sh_link;

uint32_t sh_info;

uint64_t sh_addralign;

SHF _EXECINSTR: the section contains N g P
executable instructions.

readelf -S add
There are 31 section headers, starting at offset 0x385c:

Section Headers:

[Nr] Name Type Addr off Size ES Flg Lk Inf Al
[0] NULL 00000000 0000 0O 00 @ 0 0
[1] .interp PROGBITS 000001b4 0001b4 000013 G0 A O 0 1
[2] .note.gnu.build-i NOTE 000001c8 0001c8 00024 B0 A O 0 4
[3] .note.gnu.propert NOTE 000001ec 0OOlec 0OOO1c 0O A 0 0 4
[4] .note.ABI-tag NOTE 00000208 000208 00020 60 A O 0O 4
[5] .gnu.hash GNU_HASH 00000228 000228 00020 64 A 6 O 4
[6] .dynsym DYNSYM 00000248 000248 0000a0 106 A 7 1 4
[71 .dynstr STRTAB 000002e8 0002e8 MOOObb 86 A 0 0 1
[8] .gnu.version VERSYM 00000334 0003a4 0014 62 A 6 0O 2
[9] .gnu.version_r VERNEED 000003b8 ©00O3b8 0040 G0 A 7 1 4
[16] .rel.dyn REL 000003f8 00O3f8 0PAE40 B8 A 6 0O 4
[11] .rel.plt REL 00000438 000438 000020 08 AI 6 24 4
[12] .init PROGBITS 00001000 001000 024 60 AX O 0O 4
[13] .plt PROGBITS 00001030 001030 00050 64 AX O 0O 16
[14] .plt.got PROGBITS 00001080 001080 00OE1O 10 AX O 0 16 FrerEREEREEREEREE RS
[15] .plt.sec PROGBITS 00001090 001090 0OOE40 16 AX O 0O 16
[16] .text PROGBITS 000010d0 0010d0 000259 60 AX O 0O 16 readelf 'S a-OUt
[17] .fini PROGBITS 0000132c 00132c 000018 B0 AX O 0O 4 f h m s om e moEEmEmEemmeo o
[18] .rodata PROGBITS 00002000 002000 025 0 A O 0O 4
[19] .eh_frame_hdr PROGBITS 00002028 002028 0054 0 A O O 4
[20] .eh_frame PROGBITS 0000207c 00207c 00014c B0 A O 0O 4
[21] .init_array INIT_ARRAY 00003ed® 002ed® 000EE4 04 WA O 0O 4
[22] .fini_array FINI_ARRAY 00003ed4 002ed4 000004 04 WA O 0O 4
[23] .dynamic DYNAMIC 00003ed8 002ed8 000Of8 08 WA 7 0O 4
[24] .got PROGBITS 00003fdo 002fde 000030 64 WA O 0O 4
[25] .data PROGBITS 00004000 003000 00OEE8 00 WA O 0O 4
[26] .bss NOBITS 00004008 003008 000004 60 WA O 0O 1
[27] .comment PROGBITS 00000000 003008 000023 61 MS O O 1
[28] .symtab SYMTAB 00000000 003034 000490 10 29 47 4
[29] .strtab STRTAB 00000000 0034c4 00027d 00 e 0 1
[30] .shstrtab STRTAB 00000000 003741 000118 00 e o 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O (extra 0S processing required), G (group), T (TLS),
C (compressed), x (unknown), o (0S specific), E (exclude),
p (processor specific)

Sections

.init: executable code that performs initialization tasks and needs to run
before any other code in the binary is executed.

fini: code that runs after the main program completes.

.text: where the main code of the program resides.

Sections

.rodata section, which stands for “read-only data,” is dedicated to

storing constant values. Because it stores constant values, .rodata is not
writable.

The default values of initialized variables are stored in the .data section,

which is marked as writable since the values of variables may change at
runtime.

the .bss section reserves space for uninitialized variables. The name
historically stands for “block started by symbol,” referring to the
reserving of blocks of memory for (symbolic) variables.

Dynamic linking

Dynamic linking reduces binary size by offloading code to system
libraries, such as libc, instead of embedding it within each executable.

For example, ELF files link to the system’s puts() rather than including
their own.

This not only saves space but also allows users to update libraries
independently of binaries.

https://irOnstone.gitbook.io/notes/binexp/stack/aslr/plt_and_got

Lazy Binding (.plt, .got, .got.plt Sections)

Binding at Load Time: When a binary is loaded into a process for
execution, the dynamic linker resolves references to functions located in
shared libraries. The addresses of shared functions were not known at
compile time.

In reality - Lazy Binding: many of the relocations are typically not done
right away when the binary is loaded but are deferred until the first
reference to the unresolved location is actually made.

Lazy Binding (.plt, .got, .got.plt Sections)

Lazy binding in Linux ELF binaries is implemented with the help of two
special sections, called the Procedure Linkage Table (.plt) and the Global

Offset Table (.got).

.plt is a code section that contains executable code. The PLT consists
entirely of stubs of a well-defined format, dedicated to directing calls
from the .text section to the appropriate library location.

.got.plt is a data section.

Lazy Binding (.plt, .got, .got.plt Sections)

When you call puts() in C and compile it as an ELF executable, it is not
actually puts() - instead, it gets compiled as puts@plt.

Because the program doesn't know where puts() actually is - so it jumps
to the PLT entry of puts instead.

Lazy Binding (.plt, .got, .got.plt Sections)

puts@plt does some very specific things:

e Ifthereis a GOT entry for puts, it jumps to the address stored there.
e Ifthereisn'ta GOT entry, it will resolve it and jump there.

The GOT is a massive table of addresses; these addresses are the actual
locations in memory of the libc functions. puts@got, for example, will
contain the address of puts in memory.

When the PLT gets called, it reads the GOT address and redirects
execution there. If the address is empty, it coordinates with the Id.so
(also called the dynamic linker/loader) to get the function address and
stores it in the GOT.

Dynamically Resolving a Library Function Using the PLT

Code

.plt Data

<default stub>:
(4] push QWORD PTR [rip+0x200c12]

jmp QWORD PTR [rip+0x200c14] .got.plt

.got.plt[n]:
<puts@plt>: e g<ad51r>[] L2
jmp QWORD PTR [rip+0x200c12] y
push 0x0 [
jmp <default stub>

.text

<main>:

call puts@plt

Takeaways

Calling the PLT address of a function is equivalent to calling the function
itself

e The use of the first point is clear - if we have a PLT entry for a desirable libc function, for example
system, we can just redirect execution to its PLT entry and it will be the equivalent of calling system
directly; no need to jump into libc

The GOT address contains addresses of functions in libc, and the GOT is

within the binary
e It will always be a constant offset away from the base. Therefore, if PIE is disabled or you
somehow leak the binary base, you know the exact address that contains a libc function's address.
If you perhaps have an arbitrary read, it's trivial to leak the real address of the libc function and
therefore bypass ASLR.

Example: Debug misc/lazyb

m

0028 (<__libc_start_main+245> esp,0x10)

Legend:
O

("second call to printf.
: --> 0x3efc
oxfFffffff
exFFFFFFFT
: --> Oxlead6c
--> @xlead6c

--> 0x0
ey \beV\O}upuV\}-M\}ﬂu\377\377\354\30&\377\377\34JaUVF‘\305\377\377) .
(<puts@plt>: end .

1 0x296 ()

©x56556060 <__cxa_finalize@plt>:

0x56556064 <__cxa_finalize@plt+4>

0X5655606a cxa_finalize@plt+10>:

0X56556070 <puts@plt>:

0X56556074 <puts@plt+d>: WOR

©X5655607a <puts@plt+10: WORD PTR [Enx*eax*l*ﬂxo]

st A 7 U ttps://darkdust.net/files/GDB%20

0000 | \fhuv\036puv\344\300\3/7\;77\354\306\;77\377\3453UVP\300\377\>77"\
0004 | second call to pri

0008 | @ /home/zlm\ng/l)ropbo myTeaching/Software Security UB 2021 Fall/code/lazybinding/lazyb") 0
0012| ("COLORTERM=truecolor") e a 0 e e
0016| (<main+24>: add ebx,0x2e1b) .

0020 |
0024
0028 |

Legend:

--> ox3efc
1 OXFFFFFFFF
OxXFFFFFFFf
--> Ox1ead6c
--> oxlead6c
--> 8x0
(\FbUV\B;opUV\344\SBo\377\377\354\300\377\377\3456UVP\30D\377\377)
(<puts@plt+a>: jmp WORD PTR [ebx+0xc])
1 0x296 ()

0x56556064 <__cxa_finalize@plt+4>:
©x5655606a <__cxa_finalize@plt+10>:
©X56556076 <puts@plt>: endbr32
©X56556074 <puts@plt+d>:
©Xx5655607a <puts@plt+10>: nop WORD PTR [eax+eax*1+0x8]
0x56556080 <__libc_start_maingplt>: endbr32
©x56556084 <__libc_start_main@plt+4> mp DWORD PT]
©Xx5655608a bc_start_maingplt+10>: WORD PTR [eax+eax*1+6x0]
oxf7e1fcdd <__GI__IO_puts+d>:
oxf7e1fcd5 <_ GI__I0_puts+5:
oxf7e1fcd7 <__GI__I0_puts+7:

0000 | "\fbuv\036p\)v\344\300\377\377\354\3@6\377\377\3453UVP\300\377\377)

0004 | second call to printf.

0008 | -> ¢ /home/zlm\ng/Dropbox/mvTea(hlng/Software Security UB 2021 Fall/code/lazybinding/lazyb")
0012 > (" COLORTER

0016 (<main+24>: add ebx,0x2e1b)

0620 | --> ox1

0024

0028

Legend:

Section View (Section Header)
VS.
Segment View (Program Header)

The program header table provides a segment view of the binary, as
opposed to the section view provided by the section header table.

The section view of an ELF binary is meant for static linking purposes.
The segment view is used by the operating system and dynamic linker
when loading an ELF into a process for execution to locate the relevant

code and data and decide what to load into virtual memory.

Segments are simply a bunch of sections bundled together.

Program Header Format

typedef struct {

uint32_t p_type; /* Segment type */
uint32_t p_flags; /* Segment flags */
uint64_t p_offset; /* Segment file offset *

uint64_t p_vaddr; /* Segment virtual address */
uint64_t p_paddr; /* Segment physical address */

uint64_t p_filesz; /* Segment size in file */
uint64_t p _memsz; /* Segment size in memory */ PF_X | PF_W | PF.R | ...
uint64_t p_align; /* Segment alignment */ PT_LOAD | PT_DYNAMIC | PT_INTERP | ... <
} E1f64_Phdr;
. typedef struct {
uint32_t p_type;
uint32 t p_flags;
uint64 _t p_offset;
uint64 t p_vaddr;
. u?nt64_t p_p§ddr;
Each section is described by its section header. UiREbeE: poriles)
uint64_t p_memsz;
-------------------] uint64_t p_align;

} E1f64_Phdr;

readelf -1 add
ELlf file type is DYN (Shared object file)
Entry point 0x1160
There are 12 program headers, starting at offset 52

Program Headers:

Type offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000034 0x00000034 Ox00000034 Ox00180 Ox00180 R 0x4
INTERP 0x0001b4 0x000001b4 0x000001b4 0x00013 Ox00013 R Ox1
[Requesting program interpreter: /lib/1ld-1linux.so.2]

LOAD 0x000000 OxXOO00OOOOO OXxOOOOOOOO OxO00458 0Xx00458 R 0x1000
LOAD 0x001000 Ox00001000 OxO00001000 Ox00344 0x00344 R E 0x1000
LOAD 0x002000 Ox00002000 Ox00002000 Ox001c8 O0x001c8 R 0x1000
LOAD 0x002ed0 Ox00003edd Ox00003edd 0x00138 OxO0013c RW 0Ox1000
DYNAMIC 0x002ed8 0x00003ed8 0x000O3ed8 OXxOOOF8 OxO00F8 RW Ox4
NOTE 0x0001c8 O0x000001c8 Ox000001c8 OXOOO60 OXO0060 R 0x4
GNU_PROPERTY 0x0001ec Ox000001ec Ox000001ec Ox0001c Ox0001c R 0x4
GNU_EH_FRAME 0x002028 0x00002028 0x00002028 OX00054 Ox00054 R 0x4
GNU_STACK 0x000000 OxO000O0000 OXxOOOOOOOO OXxOOO00O0 OXOOEOO RW 0Ox10
GNU_RELRO 0x002ed® 0x00003edd Ox00003edd 0x00130 Ox00130 R 0x1
Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.gnu.build-id .note.gnu.property .note.ABI-tag .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn .rel.plt

03 .init .plt .plt.got .plt.sec .text .finil

04 .rodata .eh_frame_hdr .eh_frame

05 .init_array .fini_array .dynamic .got .data .bss

06 .dynamic

07 .note.gnu.build-id .note.gnu.property .note.ABI-tag

08 .note.gnu.property

09 .eh_frame_hdr

10

11 .init_array .fini_array .dynamic .got

Background Knowledge:
Manual Binary Analysis Tools

Tools for this class

file

readelf

strings

nm

objdump

GDB

[optional] IDA Pro
[optional] ghidra
[optional] Binary Ninja

GDB Cheat Sheet

Start gdb using:

gdb <binary>

Pass initial commands for gdb through a file
gdb <binary> -x <initfile>

To start the program and breakpoint at main()
start <argv>

To start the program and breakpoint at _start
starti <argv>

To run the program without breakpoint

r <argv>

Use another progrom’s output as stdin in GDB:
r <<< $(python2 -c "print "\x12\x34'*5")

GDB Cheat Sheet

Set breakpoint at address:
b #0x80000000

Set breakpoint at beginning of a function:
b main
b <filename:line number>

b <line number>

Disassemble 10 instructions from an address:
x/10i 0x80000000

Exam 15 dword (w) from an address; show hex (x):
x/15wx 0x80000000

Exam 3 qword (g) from an address; show hex (x):
x/3gx 0x80000000

To show breakpoints
info b

To remove breakpoints

clear <function name>

clear *<instruction address>
clear <filename:line number>
clear <line number>

GDB Cheat Sheet

GDB Cheat Sheet

Use “examine” or “x” command

x/32xw <memory location> to see memory contents at memory location, showing 32 hexadecimal words
x/5s <memory location> to show 5 strings (null terminated) at a particular memory location

x/10i <memory location> to show 10 instructions at particular memory location

See registers
info reg

Step an instruction
Si

GDB Script

Use “examine” or “x” command

x/32xw <memory location> to see memory contents at memory location, showing 32 hexadecimal words
x/5s <memory location> to show 5 strings (null terminated) at a particular memory location

x/10i <memory location> to show 10 instructions at particular memory location

See registers
info reg

Step an instruction
Si

Shell Cheat Sheet

Run a program and use another program’s output as a parameter
program $(python2 -c "print "\x12\x34'*5")

Python3
python3 -c "import sys; sys.stdout.buffer.write(b"\x90'*20)"

Reading

1. https://ig.thc.org/how-does-linux-start-a-process

https://iq.thc.org/how-does-linux-start-a-process

