
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Agenda

1. Background knowledge
a. Compiler, linker, loader
b. x86 and x86-64 architectures and ISA
c. ARM ISA
d. Linux fundamentals

i. Linux file permissions
ii. Set-UID programs
iii. Memory map of a Linux process
iv. System calls
v. Piping
vi. Environment and Shell variables
vii. ELF files
viii. Reverse engineering tools

Background Knowledge:
Compiler, linker, and loader

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

A Shell in a Nutshell

https://github.com/kamalmarhubi/shell-workshop

int pid = fork();

if (pid == 0) {
 // I am the child process

 exec("ls"); }
else if (pid == -1)
{
 // fork failed
}
else {
 // I am the parent; continue my business being a cool program
 // I could wait for the child to finish if I want
}

Loading and Executing a Binary Program on Linux

Validation (permissions, memory requirements etc.)

Operating system starts by setting up a new process for the program
to run in, including a virtual address space.

The operating system maps an interpreter into the process’s virtual
memory.

Interpreter, e.g., /lib/ld-linux.so in Linux

The interpreter loads the binary into its virtual address space (the same
space in which the interpreter is loaded).

It then parses the binary to find out (among other things) which dynamic
libraries the binary uses.

The interpreter maps these into the virtual address space (using mmap or an
equivalent function) and then performs any necessary last-minute
relocations in the binary’s code sections to fill in the correct addresses for
references to the dynamic libraries.

1. Copying the command-line arguments on the stack
2. Initializing registers (e.g., the stack pointer)
3. Jumping to the program entry point (_start)

Compiling a C program behind the scene (add_32 add_64)

#include "add.h"

#define BASE 50

int add(int a, int b)
{ return a + b +
BASE;}

#ifndef ADD_H
#define ADD_H

int add(int, int);

#endif

/* This program has an integer overflow vulnerability. */
#include "add.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define USAGE "Add two integers with 50. Usage: add a b\n"

int main(int argc, char *argv[])
{
 int a = 0;
 int b = 0;

 if (argc != 3)
 {
 printf(USAGE);
 return 0;}

 a = atoi(argv[1]);
 b = atoi(argv[2]);
 printf("%d + %d + 50 = %d\n", a, b, add(a, b));
}

gcc -Wall -save-temps -P -m32 -O2 add.c main.c -o add_32

add.c add.h main.c

gcc -Wall -save-temps -P -O2 add.c main.c -o add_64

Background Knowledge:
x86 architecture

Data Types

There are 5 integer data types:

Byte – 8 bits.
Word – 16 bits.
Dword, Doubleword – 32 bits.
Quadword – 64 bits.
Double quadword – 128 bits.

Endianness

● Little Endian (Intel, ARM)
Least significant byte has lowest address
Dword address: 0x0
Value: 0x78563412

● Big Endian
Least significant byte has highest address
Dword address: 0x0
Value: 0x12345678

0x12Address 0

0x34Address 1

0x56Address 2

0x78Address 3

Base Registers

There are
● Eight 32-bit “general-purpose” registers,
● One 32-bit EFLAGS register,
● One 32-bit instruction pointer register (eip), and
● Other special-purpose registers.

The General-Purpose Registers

● 8 general-purpose
registers

● esp is the stack pointer
● ebp is the base pointer
● esi and edi are source and

destination index registers
for array and string
operations

The General-Purpose Registers

● The registers eax, ebx, ecx,
and edx may be accessed as
32-bit, 16-bit, or 8-bit
registers.

● The other four registers can
be accessed as 32-bit or
16-bit.

EFLAGS Register

The various bits of the 32-bit EFLAGS register are set (1) or reset/clear (0)
according to the results of certain operations.

We will be interested in, at most, the bits

CF – carry flag
PF – parity flag
ZF – zero flag
SF – sign flag

Instruction Pointer (EIP)

Finally, there is the EIP register, which is the instruction pointer (program
counter). Register EIP holds the address of the next instruction to be
executed.

Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

Instructions

Each instruction is of the form

label: mnemonic operand1, operand2, operand3
The label is optional.

The number of operands is 0, 1, 2, or 3, depending on the mnemonic .

Each operand is either
● An immediate value,
● A register, or
● A memory address.

Source and Destination Operands

Each operand is either a source operand or a destination operand.

A source operand, in general, may be
● An immediate value,
● A register, or
● A memory address.

A destination operand, in general, may be
● A register, or
● A memory address.

Instructions

hlt – 0 operands
halts the central processing unit (CPU) until the next external interrupt is
fired

inc – 1 operand; inc <reg>, inc <mem>

add – 2 operands; add <reg>,<reg>

imul – 1, 2, or 3 operands; imul <reg32>,<reg32>,<con>

In Intel syntax the first operand is the destination

Intel Syntax Assembly and Disassembly

Machine instructions generally fall into three categories: data movement,
arithmetic/logic, and control-flow.

<reg32> Any 32-bit register (eax, ebx, ecx, edx, esi, edi, esp, or ebp)
<reg16> Any 16-bit register (ax, bx, cx, or dx)
<reg8> Any 8-bit register (ah, bh, ch, dh, al, bl, cl, or dl)
<reg> Any register
<mem> A memory address (e.g., [eax] or [eax + ebx*4]); [] square brackets
<con32> Any 32-bit immediate
<con16> Any 16-bit immediate
<con8> Any 8-bit immediate
<con> Any 8-, 16-, or 32-bit immediate

Addressing Memory

Move from source (operand 2) to destination (operand 1)

Square bracket [] represents memory location.

mov [eax], ebx Copy 4 bytes from register EBX into memory address specified
in EAX.

mov eax, [esi - 4] Move 4 bytes at memory address ESI - 4 into EAX.

mov [esi + eax * 1], cl Move the contents of CL into the byte at address
ESI+EAX*1.

mov edx, [esi + ebx*4] Move the 4 bytes of data at address ESI+4*EBX into
EDX.

Addressing Memory

The size directives BYTE PTR, WORD PTR, and DWORD PTR serve this purpose,
indicating sizes of 1, 2, and 4 bytes respectively.

mov [ebx], 2 isn’t this ambiguous? We can have a default.

mov BYTE PTR [ebx], 2 Move 2 into the single byte at the address stored
in EBX.

mov WORD PTR [ebx], 2 Move the 16-bit integer representation of 2 into the 2
bytes starting at the address in EBX.

mov DWORD PTR [ebx], 2 Move the 32-bit integer representation of 2 into the 4
bytes starting at the address in EBX.

Data Movement Instructions

mov — Move

Syntax
mov <reg>, <reg>
mov <reg>, <mem>
mov <mem>, <reg>
mov <reg>, <con>
mov <mem>, <con>

Examples
mov eax, ebx — copy the value in EBX into EAX
mov byte ptr [var], 5 — store the value 5 into the byte at location var

Data Movement Instructions

push — Push on stack; decrements ESP by 4, then places the operand at the
location ESP points to.

Syntax
push <reg32>
push <mem>
push <con32>

Examples
push eax — push eax on the stack
push [var] — push the 4 bytes at address var onto the stack

Data Movement Instructions

pop — Pop from stack

Syntax
pop <reg32>
pop <mem>

Examples
pop edi — pop the top element of the stack into EDI.
pop [ebx] — pop the top element of the stack into memory at the four bytes
starting at location EBX.

LEA Instructions

lea — Load effective address; used for quick calculation

Syntax
lea <reg32>, <mem>

Examples
Lea edi, [ebx+4*esi] — the quantity EBX+4*ESI is placed in EDI.

Arithmetic and Logic Instructions

add eax, 10 — EAX is set to EAX + 10
addb byte ptr [eax], 10 — add 10 to the single byte stored at memory address
stored in EAX

sub al, ah — AL is set to AL - AH
sub eax, 216 — subtract 216 from the value stored in EAX

dec eax — subtract one from the contents of EAX

imul eax, [ebx] — multiply the contents of EAX by the 32-bit contents of the
memory at location EBX. Store the result in EAX.

shr ebx, cl — Store in EBX the floor of result of dividing the value of EBX by 2n
where n is the value in CL.

Control Flow Instructions

jmp — Jump

Transfers program control flow to the instruction at the memory location
indicated by the operand.

Syntax
jmp <label> # direct jump
jmp <reg32> # indirect jump

Example
jmp begin — Jump to the instruction labeled begin.

Control Flow Instructions

jcondition — Conditional jump

Syntax
je <label> (jump when equal)
jne <label> (jump when not equal)
jz <label> (jump when last result was zero)
jg <label> (jump when greater than)
jge <label> (jump when greater than or equal to)
jl <label> (jump when less than)
jle <label> (jump when less than or equal to)

Example

cmp ebx, eax
jle done

Control Flow Instructions

cmp — Compare

Syntax
cmp <reg>, <reg>
cmp <mem>, <reg>
cmp <reg>, <mem>
cmp <con>, <reg>

Example
cmp byte ptr [ebx], 10
jeq loop

If the byte stored at the memory location in EBX is equal to the integer constant 10,
jump to the location labeled loop.

Control Flow Instructions

call — Subroutine call

The call instruction first pushes the current code location onto the
hardware supported stack in memory, and then performs an
unconditional jump to the code location indicated by the label
operand. Unlike the simple jump instructions, the call instruction saves
the location to return to when the subroutine completes.

Syntax
call <label>
call <reg32>
Call <mem>

Control Flow Instructions

ret — Subroutine return

The ret instruction implements a subroutine return mechanism. This
instruction pops a code location off the hardware supported in-memory
stack to the program counter.

Syntax
ret

The Run-time Stack

The run-time stack supports procedure calls and the passing of
parameters between procedures.

The stack is located in memory.

The stack grows towards low memory.

When we push a value, esp is decremented.

When we pop a value, esp is incremented.

Stack Instructions

enter — Create a function frame

Equivalent to:

push ebp
mov ebp, esp
sub esp, Imm

Stack Instructions

leave — Releases the function frame set up by an earlier ENTER instruction.

Equivalent to:

mov esp, ebp
pop ebp

Background Knowledge:
x86-64/amd64 architecture

Registers on x86 and x86-64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

x86 vs. x86-64 (code/ladd)

/*
This program has an integer overflow vulnerability.
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

long long ladd(long long *xp, long long y)
{
 long long t = *xp + y;
 return t;
}

gcc -Wall -m32 -O2 main.c -o ladd

main.c

gcc -Wall -O2 main.c -o ladd64

int main(int argc, char *argv[])
{
 long long a = 0;
 long long b = 0;

 if (argc != 3)
 {
 printf("Usage: ladd a b\n");
 return 0;
 }

 printf("The sizeof(long long) is %d\n", sizeof(long long));

 a = atoll(argv[1]);
 b = atoll(argv[2]);

 printf("%lld + %lld = %lld\n", a, b, ladd(&a, b));
}

x86 vs. x86-64 (code/ladd)

000012c0 <ladd>:
 12c0: f3 0f 1e fb endbr32
 12c4: 8b 44 24 04 mov eax,DWORD PTR [esp+0x4]
 12c8: 8b 50 04 mov edx,DWORD PTR [eax+0x4]
 12cb: 8b 00 mov eax,DWORD PTR [eax]
 12cd: 03 44 24 08 add eax,DWORD PTR [esp+0x8]
 12d1: 13 54 24 0c adc edx,DWORD PTR [esp+0xc]
 12d5: c3 ret

x86-64

0000000000001220 <ladd>:
 1220: f3 0f 1e fa endbr64
 1224: 48 8b 07 mov rax,QWORD PTR [rdi]
 1227: 48 01 f0 add rax,rsi
 122a: c3 ret

x86

objdump -M intel -d ladd_32
objdump -M intel -d ladd_64

Background Knowledge:
ARM Cortex-A/M Architecture

Cortex-A 64 bit

Cortex-M 32 bit

Background Knowledge:
Linux File Permissions

Permission Groups

Each file and directory has three user-based permission groups:

Owner – A user is the owner of the file. By default, the person who created a file
becomes its owner. The Owner permissions apply only the owner of the file or
directory

Group – A group can contain multiple users. All users belonging to a group will
have the same access permissions to the file. The Group permissions apply only
to the group that has been assigned to the file or directory

Others – The others permissions apply to all other users on the system.

Permission Types

Each file or directory has three basic permission types defined for all the 3 user
types:

Read – The Read permission refers to a user’s capability to read the contents of
the file.

Write – The Write permissions refer to a user’s capability to write or modify a file
or directory.

Execute – The Execute permission affects a user’s capability to execute a file or
view the contents of a directory.

File type: First field in the output is file type. If the there is a – it means it
is a plain file. If there is d it means it is a directory, c represents a
character device, b represents a block device.

Permissions for owner, group, and others

Link count

Owner: This field provide info about the creator of the file.

Group

File size

Last modify time

filename

Background Knowledge:
Set-UID Programs

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

Real UID, Effective UID, and Saved UID

Each Linux/Unix process has 3 UIDs associated with it.

Real UID (RUID): This is the UID of the user/process that created THIS
process. It can be changed only if the running process has EUID=0.

Effective UID (EUID): This UID is used to evaluate privileges of the process
to perform a particular action. EUID can be changed either to RUID, or SUID
if EUID!=0. If EUID=0, it can be changed to anything.

Saved UID (SUID): If the binary image file, that was launched has a Set-UID
bit on, SUID will be the UID of the owner of the file. Otherwise, SUID will be
the RUID.

Set-UID Program

The kernel makes the decision whether a process has the privilege by
looking on the EUID of the process.

For non Set-UID programs, the effective uid and the real uid are the
same. For Set-UID programs, the effective uid is the owner of the
program, while the real uid is the user of the program.

What will happen is when a setuid binary executes, the process changes
its Effective User ID (EUID) from the default RUID to the owner of this
special binary executable file which in this case is - root.

Example: rdsecret

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

int main(int argc, char *argv[])
{
 FILE *fp = NULL;
 char buffer[100] = {0};

 // get ruid and euid
 uid_t uid = getuid();
 struct passwd *pw = getpwuid(uid);
 if (pw)
 {

printf("UID: %d, USER: %s.\n", uid, pw->pw_name);
 }

 uid_t euid = geteuid();
 pw = getpwuid(euid);

main.c

 if (pw)
 {

printf("EUID: %d, EUSER: %s.\n", euid, pw->pw_name);
 }

 print_flag();

 return(0);
}

void print_flag()
{

FILE *fp;
char buff[MAX_FLAG_SIZE];
fp = fopen("flag","r");
fread(buff, MAX_FLAG_SIZE, 1, fp);
printf("flag is : %s\n", buff);
fclose(fp);

}

https://mp.weixin.qq.com/s/GRY5tbRa3Oa-mD8PA4P2Xg

Why do we need Set-UID programs?

Many system tasks require privileged access, but should be safely usable by
unprivileged users.

Examples:

● Changing your password (passwd)
● Mounting devices
● Modifying system configuration
● Managing network settings

Running all user programs as root would be disastrous for security.

Why do we need Set-UID programs?

Unix introduces setuid programs:

● A program file is marked with a special bit (setuid)
● When executed, the process runs with the file owner’s privileges
● Commonly owned by root

This allows:

Temporary privilege elevation for a specific task

Microsoft Windows’ solution

Windows does not use file-based privilege elevation.

Instead, it uses:

● Access tokens
● User Account Control (UAC)
● Privilege separation with services

Typical pattern:

1. User program runs unprivileged
2. Requests privileged action
3. Windows service (running as SYSTEM/Admin) performs the action after

approval

Privilege is controlled by the OS security subsystem, not the executable file.

Background Knowledge:
ELF Binary Files

ELF Files

The Executable and Linkable Format (ELF) is a common standard file
format for executable files, object code, shared libraries, and core
dumps. Filename extension none, .axf, .bin, .elf, .o, .prx, .puff, .ko, .mod
and .so

Contains the program and its data. Describes how the program should
be loaded (program/segment headers). Contains metadata describing
program components (section headers).

Command file

file /bin/ls

INTERP: defines the library that should be
used to load this ELF into memory.
LOAD: defines a part of the file that should be
loaded into memory.

Sections:
.text: the executable code of your program.
.plt and .got: used to resolve and dispatch
library calls.
.data: used for pre-initialized global writable
data (such as global arrays with initial values)
.rodata: used for global read-only data (such
as string constants)
.bss: used for uninitialized global writable
data (such as global arrays without initial
values)

Tools for ELF

gcc to make your ELF.
readelf to parse the ELF header.
objdump to parse the ELF header and disassemble the source code.
nm to view your ELF's symbols.
patchelf to change some ELF properties.
objcopy to swap out ELF sections.
strip to remove otherwise-helpful information (such as symbols).
kaitai struct (https://ide.kaitai.io/) to look through your ELF interactively.

https://ide.kaitai.io/

Background Knowledge:
Memory Map of a Linux Process

Memory Map of Linux Process (32 bit)

Each process in a multi-tasking OS runs in its own memory sandbox.

This sandbox is the virtual address space.
● In 32-bit mode is a 4GB block of memory addresses.
● On modern Linux x86-64 systems, the CPU supports 64-bit virtual

addresses, but Linux actually uses only 48 bits (and on newer
systems up to 57 bits with 5-level paging).

These virtual addresses are mapped to physical memory by page tables,
which are maintained by the operating system kernel and consulted by
the processor.

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

NULL Pointer in C/C++

int * pInt = NULL;

In possible definitions of NULL in C/C++:

#define NULL ((char *)0)
#define NULL 0

//since C++11
#define NULL nullptr

/proc/pid_of_process/maps

Example processmap.c

#include <stdio.h>
#include <stdlib.h>

int main()
{

getchar();
return 0;

}

cat /proc/pid/maps
pmap -X pid
pmap -X `pidof pm`

Memory Map of Linux Process (64 bit system)

Background Knowledge:
System Calls

What are System Calls?

When a process needs to invoke a kernel service, it invokes a procedure
call in the operating system interface using special instructions (not a
call instruction in x86). Such a procedure is called a system call.

The system call enters the kernel; the kernel performs the service and
returns. Thus a process alternates between executing in user space and
kernel space.

System calls are generally not invoked directly by a program, but rather
via wrapper functions in glibc (or perhaps some other library).

Popular System Call

On Unix, Unix-like and other POSIX-compliant operating systems,
popular system calls are open, read, write, close, wait, exec, fork, exit,
and kill.

Many modern operating systems have hundreds of system calls. For
example, Linux and OpenBSD each have over 300 different calls, FreeBSD
has over 500, Windows 7 has close to 700.

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Open_(system_call)
https://en.wikipedia.org/wiki/Read_(system_call)
https://en.wikipedia.org/wiki/Write_(system_call)
https://en.wikipedia.org/wiki/Close_(system_call)
https://en.wikipedia.org/wiki/Wait_(system_call)
https://en.wikipedia.org/wiki/Exec_(system_call)
https://en.wikipedia.org/wiki/Fork_(system_call)
https://en.wikipedia.org/wiki/Exit_(system_call)
https://en.wikipedia.org/wiki/Kill_(system_call)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/FreeBSD

Glibc interfaces

Often, but not always, the name of the wrapper function is the same as
the name of the system call that it invokes.

For example, glibc contains a function chdir() which invokes the
underlying "chdir" system call.

Tools: strace & ltrace misc/firstflag
main.c

int main(int argc, char *argv[])
{
 printf("Congratulations on getting your first flag!!\n");
 print_flag();
}

flag.h
int print_flag()
{

FILE *fp = NULL;
char buff[MAX_FLAG_SIZE] = {0};

fp = fopen("/flag", "r");

if (fp == NULL)
{
 printf("Error: Cannot open the flag file!!!\n");
 return 1;
}

fread(buff, MAX_FLAG_SIZE - 2, 1, fp);
printf("The flag is: %s\n", buff);
fclose(fp);
return 0;

}

Tools: strace & ltrace
Execve - first system call
Access - check file permission
Brk - check data segment/heap
Arch_prctl - set architecture-specific thread state
Fcntl - manipulate file descriptor
Openat - similar to open
Fstat - get file status
Mmap - map files or devices into memory
Close
Read
Pread64 - similar to read
Mprotect - set protection on a region of memory
Munmap - map files or devices into memory
Write
Exit_group

Use “man 2 syscall_name” to check out its usage

Making a System Call in x86/64 Assembly

On x86/x86-64, most system calls rely on the software interrupt.

A software interrupt is caused either by an exceptional condition in the
processor itself, or a special instruction (the int 0x80 instruction or
syscall instruction).

For example: a divide-by-zero exception will be thrown if the processor's
arithmetic logic unit is commanded to divide a number by zero as this
instruction is in error and impossible.

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

Making a System Call in x86 Assembly (INT 0x80)

http://shell-storm.org/shellcode/files/shellcode-827.php

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
push eax
push ebx
mov ecx,esp
mov al,0xb
int 0x80

Making a System Call in x86 Assembly

http://shell-storm.org/shellcode/files/shellcode-827.php

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
push eax
push ebx
mov ecx,esp
mov al,0xb
int 0x80

stack

High address

Low address

esp

Making a System Call in x86 Assembly

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
push eax
push ebx
mov ecx,esp
mov al,0xb
int 0x80

stack

High address

Low address

esp

eax

Making a System Call in x86 Assembly

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
push eax
push ebx
mov ecx,esp
mov al,0xb
int 0x80

stack

High address

Low address

esp

eax

0x68732f2f
0x6e69622f

Making a System Call in x86 Assembly

xor eax,eax
push eax
push 0x68732f2f
push 0x6e69622f
mov ebx,esp
push eax
push ebx
mov ecx,esp
mov al,0xb
int 0x80

stack

High address

Low address

esp

eax

0x68732f2f
0x6e69622f

Making a System Call in x86 Assembly

Making a System Call in x86 Assembly

execve(“/bin/sh”, address of string “/bin/sh”, 0)

Making a System Call in x86_64 (64-bit) Assembly

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

push rax
xor rdx, rdx
xor rsi, rsi
mov rbx,'/bin//sh'
push rbx
push rsp
pop rdi
mov al, 59
syscall

Making a System Call in x86_64 (64-bit) Assembly

Background Knowledge:
Piping

Channels of Communication for Linux Process

Every process in Linux has three initial, standard channels of
communication:

● Standard Input (stdin, fd=0) is the channel through which the
process takes input. For example, your shell uses Standard Input to
read the commands that you input.

● Standard Output (stdout, fd=1) is the channel through which
processes output normal data, such as the flag when it is printed to
you in previous challenges or the output of utilities such as ls.

● Standard Error (stderr, fd=2) is the channel through which processes
output error details. For example, if you mistype a command, the
shell will output, over standard error, that this command does not
exist.

Examples

Redirecting output > or 1>
echo hi > asdf echo hi 1> asdf

Appending output >>
echo hi >> asdf

Redirecting errors 2>
/challenge/run 2> errors.log

Redirecting input <
rev < messagefile

Channels of Communication for Linux Process

● Process can also take input from command line arguments

ls -al

cat /flag

cat 1.txt 2.txt 3.txt

Pipe

The | (pipe) operator. Standard output from the command to the left of
the pipe will be connected to (piped into) the standard input of the
command to the right of the pipe.

echo hello-world | wc -c

Background Knowledge:
Environment and Shell Variables

Environment and Shell Variables

Environment and Shell variables are a set of dynamic named values,
stored within the system that are used by applications launched in shells.

KEY=value
KEY="Some other value"
KEY=value1:value2

The names of the variables are case-sensitive (UPPER CASE).
Multiple values must be separated by the colon : character.
There is no space around the equals = symbol.

Environment variables are variables that are available system-wide and
are inherited by all spawned child processes and shells.

Shell variables are variables that apply only to the current shell instance.
Each shell such as zsh and bash, has its own set of internal shell
variables.

Environment and Shell Variables

Common Environment Variables

USER - The current logged in user.
HOME - The home directory of the current user.
EDITOR - The default file editor to be used. This is the editor that will be
used when you type edit in your terminal.
SHELL - The path of the current user’s shell, such as bash or zsh.
LOGNAME - The name of the current user.
PATH - A list of directories to be searched when executing commands.
LANG - The current locales settings.
TERM - The current terminal emulation.
MAIL - Location of where the current user’s mail is stored.

Commands

env – The command allows you to run another program in a custom
environment without modifying the current one. When used without an
argument it will print a list of the current environment variables.
printenv – The command prints all or the specified environment
variables.
set – The command sets or unsets shell variables. When used without an
argument it will print a list of all variables including environment and
shell variables, and shell functions.
unset – The command deletes shell and environment variables.
export – The command sets environment variables

The environment variables
live towards the top of the
stack, together with
command line arguments.

Background Knowledge:
Executable and Linkable Format (ELF)

ELF Files

The Executable and Linkable Format (ELF) is a common standard file
format for executable files, object code, shared libraries, and core
dumps. Filename extension none, .axf, .bin, .elf, .o, .prx, .puff, .ko, .mod
and .so

Contains the program and its data. Describes how the program should
be loaded (program/segment headers). Contains metadata describing
program components (section headers).

● Executable (a.out), object files
(.o), shared libraries (.a), even
core dumps.

● Four types of components: an
executable header, a series of
(optional) program headers, a
number of sections, and a
series of (optional) section
headers, one per section.

Executable Header

0x7F ELF ..
Executable, obj, dynamic lib

x86-64, Arm

readelf -h a.out

Sections

The code and data in an ELF binary are logically divided into contiguous
non-overlapping chunks called sections. The structure of each section
varies depending on the contents.

The division into sections is intended to provide a convenient
organization for use by the linker.

Section Header Format

Each section is described by its section header.

readelf -S a.out

sh_flags

SHF_WRITE: the section is writable at
runtime.

SHF_ALLOC: the contents of the section are
to be loaded into virtual memory when
executing the binary.

SHF_EXECINSTR: the section contains
executable instructions.

readelf -S a.out

Sections

.init: executable code that performs initialization tasks and needs to run
before any other code in the binary is executed.

.fini: code that runs after the main program completes.

.text: where the main code of the program resides.

Sections

.rodata section, which stands for “read-only data,” is dedicated to
storing constant values. Because it stores constant values, .rodata is not
writable.

The default values of initialized variables are stored in the .data section,
which is marked as writable since the values of variables may change at
runtime.

the .bss section reserves space for uninitialized variables. The name
historically stands for “block started by symbol,” referring to the
reserving of blocks of memory for (symbolic) variables.

Dynamic linking

Dynamic linking reduces binary size by offloading code to system
libraries, such as libc, instead of embedding it within each executable.

For example, ELF files link to the system’s puts() rather than including
their own.

This not only saves space but also allows users to update libraries
independently of binaries.

https://ir0nstone.gitbook.io/notes/binexp/stack/aslr/plt_and_got

Lazy Binding (.plt, .got, .got.plt Sections)

Binding at Load Time: When a binary is loaded into a process for
execution, the dynamic linker resolves references to functions located in
shared libraries. The addresses of shared functions were not known at
compile time.

In reality - Lazy Binding: many of the relocations are typically not done
right away when the binary is loaded but are deferred until the first
reference to the unresolved location is actually made.

Lazy Binding (.plt, .got, .got.plt Sections)

Lazy binding in Linux ELF binaries is implemented with the help of two
special sections, called the Procedure Linkage Table (.plt) and the Global
Offset Table (.got).

.plt is a code section that contains executable code. The PLT consists
entirely of stubs of a well-defined format, dedicated to directing calls
from the .text section to the appropriate library location.

.got.plt is a data section.

Lazy Binding (.plt, .got, .got.plt Sections)

When you call puts() in C and compile it as an ELF executable, it is not
actually puts() - instead, it gets compiled as puts@plt.

Because the program doesn't know where puts() actually is - so it jumps
to the PLT entry of puts instead.

Lazy Binding (.plt, .got, .got.plt Sections)

puts@plt does some very specific things:

● If there is a GOT entry for puts, it jumps to the address stored there.
● If there isn't a GOT entry, it will resolve it and jump there.

The GOT is a massive table of addresses; these addresses are the actual
locations in memory of the libc functions. puts@got, for example, will
contain the address of puts in memory.

When the PLT gets called, it reads the GOT address and redirects
execution there. If the address is empty, it coordinates with the ld.so
(also called the dynamic linker/loader) to get the function address and
stores it in the GOT.

Dynamically Resolving a Library Function Using the PLT

Takeaways

Calling the PLT address of a function is equivalent to calling the function
itself

● The use of the first point is clear - if we have a PLT entry for a desirable libc function, for example
system, we can just redirect execution to its PLT entry and it will be the equivalent of calling system
directly; no need to jump into libc

The GOT address contains addresses of functions in libc, and the GOT is
within the binary

● It will always be a constant offset away from the base. Therefore, if PIE is disabled or you
somehow leak the binary base, you know the exact address that contains a libc function's address.
If you perhaps have an arbitrary read, it's trivial to leak the real address of the libc function and
therefore bypass ASLR.

Example: Debug misc/lazyb

GDB Cheatsheet:

https://darkdust.net/files/GDB%20
Cheat%20Sheet.pdf

Section View (Section Header)
vs.

Segment View (Program Header)

The program header table provides a segment view of the binary, as
opposed to the section view provided by the section header table.

The section view of an ELF binary is meant for static linking purposes.

The segment view is used by the operating system and dynamic linker
when loading an ELF into a process for execution to locate the relevant
code and data and decide what to load into virtual memory.

Segments are simply a bunch of sections bundled together.

Program Header Format

Each section is described by its section header.

readelf -l a.out

Background Knowledge:
Manual Binary Analysis Tools

Tools for this class

file
readelf
strings
nm
objdump
GDB
[optional] IDA Pro
[optional] ghidra
[optional] Binary Ninja

GDB Cheat Sheet

Start gdb using:
gdb <binary>
Pass initial commands for gdb through a file
gdb <binary> –x <initfile>

To start the program and breakpoint at main()
start <argv>

To start the program and breakpoint at _start
starti <argv>

To run the program without breakpoint
r <argv>
Use another progrom’s output as stdin in GDB:
r <<< $(python2 -c "print '\x12\x34'*5")

GDB Cheat Sheet

Set breakpoint at address:
b *0x80000000

Set breakpoint at beginning of a function:
b main

….
b <filename:line number>
b <line number>

Disassemble 10 instructions from an address:
x/10i 0x80000000

Exam 15 dword (w) from an address; show hex (x):
x/15wx 0x80000000

Exam 3 qword (g) from an address; show hex (x):
x/3gx 0x80000000

GDB Cheat Sheet

To show breakpoints
info b

To remove breakpoints
clear <function name>
clear *<instruction address>
clear <filename:line number>
clear <line number>

GDB Cheat Sheet

Use “examine” or “x” command
x/32xw <memory location> to see memory contents at memory location, showing 32 hexadecimal words
x/5s <memory location> to show 5 strings (null terminated) at a particular memory location
x/10i <memory location> to show 10 instructions at particular memory location

See registers
info reg

Step an instruction
si

GDB Script

Use “examine” or “x” command
x/32xw <memory location> to see memory contents at memory location, showing 32 hexadecimal words
x/5s <memory location> to show 5 strings (null terminated) at a particular memory location
x/10i <memory location> to show 10 instructions at particular memory location

See registers
info reg

Step an instruction
si

Shell Cheat Sheet

Run a program and use another program’s output as a parameter
program $(python2 -c "print '\x12\x34'*5")

Python3
python3 -c "import sys; sys.stdout.buffer.write(b'\x90'*20)"

Reading

1. https://iq.thc.org/how-does-linux-start-a-process

https://iq.thc.org/how-does-linux-start-a-process

